Your browser doesn't support javascript.
loading
Chemical control of competing electron transfer pathways in iron tetracyano-polypyridyl photosensitizers.
Kunnus, Kristjan; Li, Lin; Titus, Charles J; Lee, Sang Jun; Reinhard, Marco E; Koroidov, Sergey; Kjær, Kasper S; Hong, Kiryong; Ledbetter, Kathryn; Doriese, William B; O'Neil, Galen C; Swetz, Daniel S; Ullom, Joel N; Li, Dale; Irwin, Kent; Nordlund, Dennis; Cordones, Amy A; Gaffney, Kelly J.
Affiliation
  • Kunnus K; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA kkunnus@stanford.edu acordon@slac.stanford.edu kgaffney@slac.stanford.edu.
  • Li L; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA kkunnus@stanford.edu acordon@slac.stanford.edu kgaffney@slac.stanford.edu.
  • Titus CJ; Department of Physics, Stanford University Stanford California 94305 USA.
  • Lee SJ; SLAC National Accelerator Laboratory Menlo Park California 94025 USA.
  • Reinhard ME; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA kkunnus@stanford.edu acordon@slac.stanford.edu kgaffney@slac.stanford.edu.
  • Koroidov S; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA kkunnus@stanford.edu acordon@slac.stanford.edu kgaffney@slac.stanford.edu.
  • Kjær KS; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA kkunnus@stanford.edu acordon@slac.stanford.edu kgaffney@slac.stanford.edu.
  • Hong K; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA kkunnus@stanford.edu acordon@slac.stanford.edu kgaffney@slac.stanford.edu.
  • Ledbetter K; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA kkunnus@stanford.edu acordon@slac.stanford.edu kgaffney@slac.stanford.edu.
  • Doriese WB; Department of Physics, Stanford University Stanford California 94305 USA.
  • O'Neil GC; National Institute of Standards and Technology Boulder CO 80305 USA.
  • Swetz DS; National Institute of Standards and Technology Boulder CO 80305 USA.
  • Ullom JN; National Institute of Standards and Technology Boulder CO 80305 USA.
  • Li D; National Institute of Standards and Technology Boulder CO 80305 USA.
  • Irwin K; SLAC National Accelerator Laboratory Menlo Park California 94025 USA.
  • Nordlund D; Department of Physics, Stanford University Stanford California 94305 USA.
  • Cordones AA; SLAC National Accelerator Laboratory Menlo Park California 94025 USA.
  • Gaffney KJ; SLAC National Accelerator Laboratory Menlo Park California 94025 USA.
Chem Sci ; 11(17): 4360-4373, 2020 Apr 16.
Article in En | MEDLINE | ID: mdl-34122894
ABSTRACT
Photoinduced intramolecular electron transfer dynamics following metal-to-ligand charge-transfer (MLCT) excitation of [Fe(CN)4(2,2'-bipyridine)]2- (1), [Fe(CN)4(2,3-bis(2-pyridyl)pyrazine)]2- (2) and [Fe(CN)4(2,2'-bipyrimidine)]2- (3) were investigated in various solvents with static and time-resolved UV-Visible absorption spectroscopy and Fe 2p3d resonant inelastic X-ray scattering (RIXS). This series of polypyridyl ligands, combined with the strong solvatochromism of the complexes, enables the 1MLCT vertical energy to be varied from 1.64 eV to 2.64 eV and the 3MLCT lifetime to range from 180 fs to 67 ps. The 3MLCT lifetimes in 1 and 2 decrease exponentially as the MLCT energy increases, consistent with electron transfer to the lowest energy triplet metal-centred (3MC) excited state, as established by the Tanabe-Sugano analysis of the Fe 2p3d RIXS data. In contrast, the 3MLCT lifetime in 3 changes non-monotonically with MLCT energy, exhibiting a maximum. This qualitatively distinct behaviour results from a competing 3MLCT → ground state (GS) electron transfer pathway that exhibits energy gap law behaviour. The 3MLCT → GS pathway involves nuclear tunnelling for the high-frequency polypyridyl breathing mode (hν = 1530 cm-1), which is most displaced for complex 3, making this pathway significantly more efficient. Our study demonstrates that the excited state relaxation mechanism of Fe polypyridyl photosensitizers can be readily tuned by ligand and solvent environment. Furthermore, our study reveals that extending charge transfer lifetimes requires control of the relative energies of the 3MLCT and the 3MC states and suppression of the intramolecular distortion of the acceptor ligand in the 3MLCT excited state.