Your browser doesn't support javascript.
loading
Mitochondrial Effects in the Liver of C57BL/6 Mice by Low Dose, High Energy, High Charge Irradiation.
Barnette, Brooke L; Yu, Yongjia; Ullrich, Robert L; Emmett, Mark R.
Affiliation
  • Barnette BL; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA.
  • Yu Y; Department of Radiation Oncology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA.
  • Ullrich RL; The Radiation Effects Research Foundation (RERF), Hiroshima 732-0815, Japan.
  • Emmett MR; Department of Radiation Oncology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA.
Int J Mol Sci ; 22(21)2021 Oct 30.
Article in En | MEDLINE | ID: mdl-34769236
ABSTRACT
Galactic cosmic rays are primarily composed of protons (85%), helium (14%), and high charge/high energy ions (HZEs) such as 56Fe, 28Si, and 16O. HZE exposure is a major risk factor for astronauts during deep-space travel due to the possibility of HZE-induced cancer. A systems biology integrated omics approach encompassing transcriptomics, proteomics, lipidomics, and functional biochemical assays was used to identify microenvironmental changes induced by HZE exposure. C57BL/6 mice were placed into six treatment groups and received the following irradiation treatments 600 MeV/n 56Fe (0.2 Gy), 1 GeV/n 16O (0.2 Gy), 350 MeV/n 28Si (0.2 Gy), 137Cs (1.0 Gy) gamma rays, 137Cs (3.0 Gy) gamma rays, and sham irradiation. Left liver lobes were collected at 30, 60, 120, 270, and 360 days post-irradiation. Analysis of transcriptomic and proteomic data utilizing ingenuity pathway analysis identified multiple pathways involved in mitochondrial function that were altered after HZE irradiation. Lipids also exhibited changes that were linked to mitochondrial function. Molecular assays for mitochondrial Complex I activity showed significant decreases in activity after HZE exposure. HZE-induced mitochondrial dysfunction suggests an increased risk for deep space travel. Microenvironmental and pathway analysis as performed in this research identified possible targets for countermeasures to mitigate risk.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Radiation Injuries, Experimental / Mitochondria, Liver / Cosmic Radiation / Electron Transport Complex I / Gamma Rays / Liver Type of study: Prognostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: Int J Mol Sci Year: 2021 Type: Article Affiliation country: United States

Full text: 1 Database: MEDLINE Main subject: Radiation Injuries, Experimental / Mitochondria, Liver / Cosmic Radiation / Electron Transport Complex I / Gamma Rays / Liver Type of study: Prognostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: Int J Mol Sci Year: 2021 Type: Article Affiliation country: United States