Your browser doesn't support javascript.
loading
Secreted mutant calreticulins as rogue cytokines in myeloproliferative neoplasms.
Pecquet, Christian; Papadopoulos, Nicolas; Balligand, Thomas; Chachoua, Ilyas; Tisserand, Amandine; Vertenoeil, Gaëlle; Nédélec, Audrey; Vertommen, Didier; Roy, Anita; Marty, Caroline; Nivarthi, Harini; Defour, Jean-Philippe; El-Khoury, Mira; Hug, Eva; Majoros, Andrea; Xu, Erica; Zagrijtschuk, Oleh; Fertig, Tudor E; Marta, Daciana S; Gisslinger, Heinz; Gisslinger, Bettina; Schalling, Martin; Casetti, Ilaria; Rumi, Elisa; Pietra, Daniela; Cavalloni, Chiara; Arcaini, Luca; Cazzola, Mario; Komatsu, Norio; Kihara, Yoshihiko; Sunami, Yoshitaka; Edahiro, Yoko; Araki, Marito; Lesyk, Roman; Buxhofer-Ausch, Veronika; Heibl, Sonja; Pasquier, Florence; Havelange, Violaine; Plo, Isabelle; Vainchenker, William; Kralovics, Robert; Constantinescu, Stefan N.
Affiliation
  • Pecquet C; Ludwig Cancer Research, Brussels, Belgium.
  • Papadopoulos N; Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium.
  • Balligand T; Ludwig Cancer Research, Brussels, Belgium.
  • Chachoua I; Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium.
  • Tisserand A; Ludwig Cancer Research, Brussels, Belgium.
  • Vertenoeil G; Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium.
  • Nédélec A; Ludwig Cancer Research, Brussels, Belgium.
  • Vertommen D; Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium.
  • Roy A; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
  • Marty C; INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France.
  • Nivarthi H; Université Paris Cité, UMR 1287, Gustave Roussy, Villejuif, France.
  • Defour JP; UMR 1287, Gustave Roussy, Villejuif, France.
  • El-Khoury M; Ludwig Cancer Research, Brussels, Belgium.
  • Hug E; Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium.
  • Majoros A; Ludwig Cancer Research, Brussels, Belgium.
  • Xu E; Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium.
  • Zagrijtschuk O; Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium.
  • Fertig TE; Ludwig Cancer Research, Brussels, Belgium.
  • Marta DS; Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium.
  • Gisslinger H; INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France.
  • Gisslinger B; UMR 1287, Gustave Roussy, Villejuif, France.
  • Schalling M; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France.
  • Casetti I; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
  • Rumi E; Ludwig Cancer Research, Brussels, Belgium.
  • Pietra D; Université Catholique de Louvain and de Duve Institute, SIGN Unit, Brussels, Belgium.
  • Cavalloni C; INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France.
  • Arcaini L; UMR 1287, Gustave Roussy, Villejuif, France.
  • Cazzola M; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France.
  • Komatsu N; MyeloPro Diagnostics and Research GmbH, Vienna, Austria.
  • Kihara Y; MyeloPro Diagnostics and Research GmbH, Vienna, Austria.
  • Sunami Y; MyeloPro Diagnostics and Research GmbH, Vienna, Austria.
  • Edahiro Y; MyeloPro Diagnostics and Research GmbH, Vienna, Austria.
  • Araki M; MyeloPro Diagnostics and Research GmbH, Vienna, Austria.
  • Lesyk R; Ultrastructural Pathology Lab and Bioimaging, Institute of Pathology Victor Babeș, Bucharest, Romania.
  • Buxhofer-Ausch V; Division of Hematology and Blood Coagulation, Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna, Vienna, Austria.
  • Heibl S; Division of Hematology and Blood Coagulation, Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna, Vienna, Austria.
  • Pasquier F; Division of Hematology and Blood Coagulation, Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna, Vienna, Austria.
  • Havelange V; Division of Hematology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
  • Plo I; Division of Hematology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
  • Vainchenker W; Division of Hematology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
  • Kralovics R; Division of Hematology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
  • Constantinescu SN; Division of Hematology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
Blood ; 141(8): 917-929, 2023 02 23.
Article in En | MEDLINE | ID: mdl-36356299
Mutant calreticulin (CALR) proteins resulting from a -1/+2 frameshifting mutation of the CALR exon 9 carry a novel C-terminal amino acid sequence and drive the development of myeloproliferative neoplasms (MPNs). Mutant CALRs were shown to interact with and activate the thrombopoietin receptor (TpoR/MPL) in the same cell. We report that mutant CALR proteins are secreted and can be found in patient plasma at levels up to 160 ng/mL, with a mean of 25.64 ng/mL. Plasma mutant CALR is found in complex with soluble transferrin receptor 1 (sTFR1) that acts as a carrier protein and increases mutant CALR half-life. Recombinant mutant CALR proteins bound and activated the TpoR in cell lines and primary megakaryocytic progenitors from patients with mutated CALR in which they drive thrombopoietin-independent colony formation. Importantly, the CALR-sTFR1 complex remains functional for TpoR activation. By bioluminescence resonance energy transfer assay, we show that mutant CALR proteins produced in 1 cell can specifically interact in trans with the TpoR on a target cell. In comparison with cells that only carry TpoR, cells that carry both TpoR and mutant CALR are hypersensitive to exogenous mutant CALR proteins and respond to levels of mutant CALR proteins similar to those in patient plasma. This is consistent with CALR-mutated cells that expose TpoR carrying immature N-linked sugars at the cell surface. Thus, secreted mutant CALR proteins will act more specifically on the MPN clone. In conclusion, a chaperone, CALR, can turn into a rogue cytokine through somatic mutation of its encoding gene.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Myeloproliferative Disorders / Neoplasms Limits: Humans Language: En Journal: Blood Year: 2023 Type: Article Affiliation country: Belgium

Full text: 1 Database: MEDLINE Main subject: Myeloproliferative Disorders / Neoplasms Limits: Humans Language: En Journal: Blood Year: 2023 Type: Article Affiliation country: Belgium