Your browser doesn't support javascript.
loading
Hydroxylation and lyase reactions of steroids catalyzed by mouse cytochrome P450 17A1 (Cyp17a1).
Lee, Sung-Gyu; Kim, Vitchan; Lee, Gyu-Hyeong; Kim, Changmin; Jeong, Eunseo; Guengerich, F Peter; Kim, Donghak.
Affiliation
  • Lee SG; Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea.
  • Kim V; Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea.
  • Lee GH; Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea.
  • Kim C; Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea.
  • Jeong E; Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea.
  • Guengerich FP; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
  • Kim D; Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea. Electronic address: donghak@konkuk.ac.kr.
J Inorg Biochem ; 240: 112085, 2023 03.
Article in En | MEDLINE | ID: mdl-36640554
Cytochrome P450 17A1 (CYP17A1) catalyzes 17α-hydroxylation and 17,20-lyase reactions with steroid hormones. Mice contain an orthologous Cyp17a1 enzyme in the genome, and its amino acid sequence has high similarity with human CYP17A1. We purified recombinant mouse Cyp17a1 and characterized its oxidation reactions with progesterone and pregnenolone. The open reading frame of the mouse Cyp17a1 gene was inserted and successfully expressed in Escherichia coli and then purified using Ni2+-nitrilotriacetic acid (NTA) affinity column chromatography. Purified mouse Cyp17a1 displayed typical Type I binding titration spectral changes upon the addition of progesterone, 17α-OH progesterone, pregnenolone, and 17α-OH pregnenolone, with similar binding affinities to those of human CYP17A1. Catalytic activities for 17α-hydroxylation and 17,20-lyase reactions were studied using ultra-performance liquid chromatography (UPLC)-mass spectrometry analysis. Mouse Cyp17a1 showed cytochrome b5 stimulation in catalysis. In comparison to human enzyme, much higher specificity constants (kcat/Km) were observed with mouse Cyp17a1. In the reactions of Δ4-steroids (progesterone and 17α-OH progesterone), the specificity constants were 2100 times higher than the human enzyme. The addition of cytochrome b5 produced significant stimulation of 17,20-lyase activities of mouse Cyp17a1. Two Arg mutants of mouse Cyp17a1 (R347H and R358Q) displayed a larger decrease in 17,20-lyase reaction (from 17α-OH pregnenolone to dehydroepiandrosterone, DHEA) than 17α-hydroxylation, indicating that -as in human CYP17A1-these basic residues in mouse Cyp17a1 are important in interacting with the cytochrome b5 protein in the lyase reactions.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Progesterone / Lyases Limits: Animals / Humans Language: En Journal: J Inorg Biochem Year: 2023 Type: Article

Full text: 1 Database: MEDLINE Main subject: Progesterone / Lyases Limits: Animals / Humans Language: En Journal: J Inorg Biochem Year: 2023 Type: Article