Geotechnical and environmental radioactivity investigations at Al Sadis Min Uktober city, Cairo municipality (Egypt), for the high-speed railway construction.
Appl Radiat Isot
; 193: 110664, 2023 Mar.
Article
in En
| MEDLINE
| ID: mdl-36669267
The present study aims to evaluate the possibility of constructing a new high-speed railway (HSR) at Al Sadis Min Uktober city, Cairo (Egypt): geotechnical and environmental radiological hazards are estimated from several collected soil and water samples. A variety of laboratory geotechnical tests such as grain size, free swelling test, liquid and plastic limits, chemical analysis and uniaxial compression strength are applied to sixty-one drill holes. A geotechnical examination of the coarse-grained soil at the foundation level classified it as poorly graded soil. The results of the investigation of fine-grained soil at the foundation level shown that the liquid limit ranges from 22% to 55%, the plastic limit ranges from 12% to 28%, the plasticity index varies from 11% to 33%, free swelling varies from 51% to 71%. Mechanically, the uniaxial compressive strength values on rock samples range from 6.96 MPa to 142.39 MPa. The radioactive study is performed to detect the 226Ra, 232Th, and 40 K activity concentrations of the soil samples: their mean values are 34 ± 10 Bq·kg-1, 14 ± 5 Bq·kg-1 and 552 ± 20 Bq·kg-1, respectively. The values of radiological hazard indexes are not exceeded the permissible limits: e.g. the mean value of absorbed dose rate is 47 ± 6 nGy h-1; the annual gonadal dose equivalent is 0.3 ± 0.04 mSv·y-1; the lifetime cancer risk is 02 ± 0.2·10-3. Thus, the soil in the studied railway area is safe to use in building materials and infrastructure applications: the radiological hazards and the geotechnical studies confirmed the studied area is suitable to construct a new community having a HSR. According to the SWOT-PEST and environmental impact analyses, the construction of the HSR meets the criteria of the Kyoto Protocol, the EU Climate and Energy policy, and other international treaties.
Full text:
1
Database:
MEDLINE
Language:
En
Journal:
Appl Radiat Isot
Journal subject:
MEDICINA NUCLEAR
/
SAUDE AMBIENTAL
Year:
2023
Type:
Article
Affiliation country:
Egypt