Your browser doesn't support javascript.
loading
Stepwise recombination suppression around the mating-type locus in an ascomycete fungus with self-fertile spores.
Vittorelli, Nina; Rodríguez de la Vega, Ricardo C; Snirc, Alodie; Levert, Emilie; Gautier, Valérie; Lalanne, Christophe; De Filippo, Elsa; Gladieux, Pierre; Guillou, Sonia; Zhang, Yu; Tejomurthula, Sravanthi; Grigoriev, Igor V; Debuchy, Robert; Silar, Philippe; Giraud, Tatiana; Hartmann, Fanny E.
Affiliation
  • Vittorelli N; Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
  • Rodríguez de la Vega RC; Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France.
  • Snirc A; Département de Biologie, École Normale Supérieure, PSL Université Paris, Paris, France.
  • Levert E; Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
  • Gautier V; Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
  • Lalanne C; Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
  • De Filippo E; Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France.
  • Gladieux P; Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France.
  • Guillou S; Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France.
  • Zhang Y; Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
  • Tejomurthula S; Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France.
  • Grigoriev IV; PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France.
  • Debuchy R; PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France.
  • Silar P; U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.
  • Giraud T; U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.
  • Hartmann FE; U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.
PLoS Genet ; 19(2): e1010347, 2023 02.
Article in En | MEDLINE | ID: mdl-36763677
ABSTRACT
Recombination is often suppressed at sex-determining loci in plants and animals, and at self-incompatibility or mating-type loci in plants and fungi. In fungal ascomycetes, recombination suppression around the mating-type locus is associated with pseudo-homothallism, i.e. the production of self-fertile dikaryotic sexual spores carrying the two opposite mating types. This has been well studied in two species complexes from different families of Sordariales Podospora anserina and Neurospora tetrasperma. However, it is unclear whether this intriguing association holds in other species. We show here that Schizothecium tetrasporum, a fungus from a third family in the order Sordariales, also produces mostly self-fertile dikaryotic spores carrying the two opposite mating types. This was due to a high frequency of second meiotic division segregation at the mating-type locus, indicating the occurrence of a single and systematic crossing-over event between the mating-type locus and the centromere, as in P. anserina. The mating-type locus has the typical Sordariales organization, plus a MAT1-1-1 pseudogene in the MAT1-2 haplotype. High-quality genome assemblies of opposite mating types and segregation analyses revealed a suppression of recombination in a region of 1.47 Mb around the mating-type locus. We detected three evolutionary strata, indicating a stepwise extension of recombination suppression. The three strata displayed no rearrangement or transposable element accumulation but gene losses and gene disruptions were present, and precisely at the strata margins. Our findings indicate a convergent evolution of self-fertile dikaryotic sexual spores across multiple ascomycete fungi. The particular pattern of meiotic segregation at the mating-type locus was associated with recombination suppression around this locus, that had extended stepwise. This association between pseudo-homothallism and recombination suppression across lineages and the presence of gene disruption at the strata limits are consistent with a recently proposed mechanism of sheltering deleterious alleles to explain stepwise recombination suppression.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Ascomycota / Sordariales Language: En Journal: PLoS Genet Journal subject: GENETICA Year: 2023 Type: Article Affiliation country: France

Full text: 1 Database: MEDLINE Main subject: Ascomycota / Sordariales Language: En Journal: PLoS Genet Journal subject: GENETICA Year: 2023 Type: Article Affiliation country: France