Your browser doesn't support javascript.
loading
Effective transport network driven by tortuosity gradient enables high-electrochem-active solid-state batteries.
Liu, Qing-Song; An, Han-Wen; Wang, Xu-Feng; Kong, Fan-Peng; Sun, Ye-Cai; Gong, Yu-Xin; Lou, Shuai-Feng; Shi, Yi-Fan; Sun, Nan; Deng, Biao; Wang, Jian; Wang, Jia-Jun.
Affiliation
  • Liu QS; Ministry of Industry and Information Technology (MIIT) Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China.
  • An HW; Chongqing Research Institute of HIT, Chongqing 401135, China.
  • Wang XF; Ministry of Industry and Information Technology (MIIT) Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China.
  • Kong FP; Ministry of Industry and Information Technology (MIIT) Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China.
  • Sun YC; Ministry of Industry and Information Technology (MIIT) Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China.
  • Gong YX; Ministry of Industry and Information Technology (MIIT) Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China.
  • Lou SF; Ministry of Industry and Information Technology (MIIT) Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China.
  • Shi YF; Ministry of Industry and Information Technology (MIIT) Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China.
  • Sun N; Ministry of Industry and Information Technology (MIIT) Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China.
  • Deng B; Ministry of Industry and Information Technology (MIIT) Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China.
  • Wang J; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China.
  • Wang JJ; Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada.
Natl Sci Rev ; 10(3): nwac272, 2023 Mar.
Article in En | MEDLINE | ID: mdl-36875785

Full text: 1 Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Natl Sci Rev Year: 2023 Type: Article Affiliation country: China

Full text: 1 Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Natl Sci Rev Year: 2023 Type: Article Affiliation country: China