Your browser doesn't support javascript.
loading
Supramolecular Complexation of Azobenzene Dyes by Cucurbit[7]uril.
Kommidi, Sai Shradha Reddy; Smith, Bradley D.
Affiliation
  • Kommidi SSR; Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States.
  • Smith BD; Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States.
J Org Chem ; 88(13): 8431-8440, 2023 Jul 07.
Article in En | MEDLINE | ID: mdl-37256736
This report describes cucurbit[7]uril (CB7) complexation of azobenzene dyes that have a 4-(N,N'-dimethylamino) or 4-amino substituent. Absorption and NMR data show that CB7 encapsulates the protonated form of the azobenzene and that the complexed dye exists as its azonium tautomer with a trans azo conformation and substantial quinoid resonance character. Because CB7 complexation stabilizes the dye conjugate acid, there is an upward shift in its pKa, and in one specific case, the pKa of the protonated azobenzene is increased from 3.09 to 4.47. Molecular modeling indicates that the CB7/azobenzene complex is stabilized by three major noncovalent factors: (i) ion-dipole interactions between the partially cationic 4-(N,N'-dimethylamino) or 4-amino group on the encapsulated protonated azobenzene and the electronegative carbonyl oxygens on CB7, (ii) inclusion of the upper aryl ring of the azobenzene within the hydrophobic CB7 cavity, and (iii) a hydrogen bond between the proton on the azo nitrogen and CB7 carbonyls. CB7 complexation enhances azobenzene stability and increases azobenzene hydrophilicity; thus, it is a promising way to improve azobenzene performance as a pigment or prodrug. In addition, the striking yellow/pink color change that accompanies CB7 complexation can be exploited to create azobenzene dye displacement assays with naked eye detection.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Macrocyclic Compounds / Coloring Agents Type of study: Prognostic_studies Language: En Journal: J Org Chem Year: 2023 Type: Article Affiliation country: United States

Full text: 1 Database: MEDLINE Main subject: Macrocyclic Compounds / Coloring Agents Type of study: Prognostic_studies Language: En Journal: J Org Chem Year: 2023 Type: Article Affiliation country: United States