Your browser doesn't support javascript.
loading
Photoluminescence control by atomically precise surface metallization of C-centered hexagold(i) clusters using N-heterocyclic carbenes.
Lei, Zhen; Zhao, Pei; Pei, Xiao-Li; Ube, Hitoshi; Ehara, Masahiro; Shionoya, Mitsuhiko.
Affiliation
  • Lei Z; Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan shionoya@chem.s.u-tokyo.ac.jp.
  • Zhao P; Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan ehara@ims.ac.jp.
  • Pei XL; Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan shionoya@chem.s.u-tokyo.ac.jp.
  • Ube H; Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan shionoya@chem.s.u-tokyo.ac.jp.
  • Ehara M; Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan ehara@ims.ac.jp.
  • Shionoya M; Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan shionoya@chem.s.u-tokyo.ac.jp.
Chem Sci ; 14(23): 6207-6215, 2023 Jun 14.
Article in En | MEDLINE | ID: mdl-37325149
ABSTRACT
The properties of metal clusters are highly dependent on their molecular surface structure. The aim of this study is to precisely metallize and rationally control the photoluminescence properties of a carbon(C)-centered hexagold(i) cluster (CAuI6) using N-heterocyclic carbene (NHC) ligands with one pyridyl, or one or two picolyl pendants and a specific number of silver(i) ions at the cluster surface. The results suggest that the photoluminescence of the clusters depends highly on both the rigidity and coverage of the surface structure. In other words, the loss of structural rigidity significantly reduces the quantum yield (QY). The QY in CH2Cl2 is 0.04 for [(C)(AuI-BIPc)6AgI3(CH3CN)3](BF4)5 (BIPc = N-isopropyl-N'-2-picolylbenzimidazolylidene), a significant decrease from 0.86 for [(C)(AuI-BIPy)6AgI2](BF4)4 (BIPy = N-isopropyl-N'-2-pyridylbenzimidazolylidene). This is due to the lower structural rigidity of the ligand BIPc because it contains a methylene linker. Increasing the number of capping AgI ions, i.e., the coverage of the surface structure, increases the phosphorescence efficiency. The QY for [(C)(AuI-BIPc2)6AgI4(CH3CN)2](BF4)6 (BIPc2 = N,N'-di(2-pyridyl)benzimidazolylidene) recovers to 0.40, 10-times that of the cluster with BIPc. Further theoretical calculations confirm the roles of AgI and NHC in the electronic structures. This study reveals the atomic-level surface structure-property relationships of heterometallic clusters.