Your browser doesn't support javascript.
loading
SemiBin2: self-supervised contrastive learning leads to better MAGs for short- and long-read sequencing.
Pan, Shaojun; Zhao, Xing-Ming; Coelho, Luis Pedro.
Affiliation
  • Pan S; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.
  • Zhao XM; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China.
  • Coelho LP; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.
Bioinformatics ; 39(39 Suppl 1): i21-i29, 2023 06 30.
Article in En | MEDLINE | ID: mdl-37387171
MOTIVATION: Metagenomic binning methods to reconstruct metagenome-assembled genomes (MAGs) from environmental samples have been widely used in large-scale metagenomic studies. The recently proposed semi-supervised binning method, SemiBin, achieved state-of-the-art binning results in several environments. However, this required annotating contigs, a computationally costly and potentially biased process. RESULTS: We propose SemiBin2, which uses self-supervised learning to learn feature embeddings from the contigs. In simulated and real datasets, we show that self-supervised learning achieves better results than the semi-supervised learning used in SemiBin1 and that SemiBin2 outperforms other state-of-the-art binners. Compared to SemiBin1, SemiBin2 can reconstruct 8.3-21.5% more high-quality bins and requires only 25% of the running time and 11% of peak memory usage in real short-read sequencing samples. To extend SemiBin2 to long-read data, we also propose ensemble-based DBSCAN clustering algorithm, resulting in 13.1-26.3% more high-quality genomes than the second best binner for long-read data. AVAILABILITY AND IMPLEMENTATION: SemiBin2 is available as open source software at https://github.com/BigDataBiology/SemiBin/ and the analysis scripts used in the study can be found at https://github.com/BigDataBiology/SemiBin2_benchmark.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Algorithms / Metagenome Language: En Journal: Bioinformatics Journal subject: INFORMATICA MEDICA Year: 2023 Type: Article Affiliation country: China

Full text: 1 Database: MEDLINE Main subject: Algorithms / Metagenome Language: En Journal: Bioinformatics Journal subject: INFORMATICA MEDICA Year: 2023 Type: Article Affiliation country: China