Your browser doesn't support javascript.
loading
An Integrative Approach to Elucidate Mechanisms Underlying the Pharmacokinetic Goldenseal-Midazolam Interaction: Application of In Vitro Assays and Physiologically Based Pharmacokinetic Models to Understand Clinical Observations.
Nguyen, James T; Tian, Dan-Dan; Tanna, Rakshit S; Arian, Christopher M; Calamia, Justina C; Rettie, Allan E; Thummel, Kenneth E; Paine, Mary F.
Affiliation
  • Nguyen JT; Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, Univers
  • Tian DD; Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, Univers
  • Tanna RS; Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, Univers
  • Arian CM; Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, Univers
  • Calamia JC; Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, Univers
  • Rettie AE; Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, Univers
  • Thummel KE; Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, Univers
  • Paine MF; Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, Univers
J Pharmacol Exp Ther ; 387(3): 252-264, 2023 12.
Article in En | MEDLINE | ID: mdl-37541764
The natural product goldenseal is a clinical inhibitor of CYP3A activity, as evidenced by a 40%-60% increase in midazolam area under the plasma concentration versus time curve (AUC) after coadministration with goldenseal. The predominant goldenseal alkaloids berberine and (-)-ß-hydrastine were previously identified as time-dependent CYP3A inhibitors using human liver microsomes. Whether these alkaloids contribute to the clinical interaction, as well as the primary anatomic site (hepatic vs. intestinal) and mode of CYP3A inhibition (reversible vs. time-dependent), remain uncharacterized. The objective of this study was to mechanistically assess the pharmacokinetic goldenseal-midazolam interaction using an integrated in vitro-in vivo-in silico approach. Using human intestinal microsomes, (-)-ß-hydrastine was a more potent time-dependent inhibitor of midazolam 1'-hydroxylation than berberine (KI and kinact: 8.48 µM and 0.041 minutes-1, respectively, vs. >250 µM and ∼0.06 minutes-1, respectively). Both the AUC and Cmax of midazolam increased by 40%-60% after acute (single 3-g dose) and chronic (1 g thrice daily × 6 days) goldenseal administration to healthy adults. These increases, coupled with a modest or no increase (≤23%) in half-life, suggested that goldenseal primarily inhibited intestinal CYP3A. A physiologically based pharmacokinetic interaction model incorporating berberine and (-)-ß-hydrastine successfully predicted the goldenseal-midazolam interaction to within 20% of that observed after both chronic and acute goldenseal administration. Simulations implicated (-)-ß-hydrastine as the major alkaloid precipitating the interaction, primarily via time-dependent inhibition of intestinal CYP3A, after chronic and acute goldenseal exposure. Results highlight the potential interplay between time-dependent and reversible inhibition of intestinal CYP3A as the mechanism underlying natural product-drug interactions, even after acute exposure to the precipitant. SIGNIFICANCE STATEMENT: Natural products can alter the pharmacokinetics of an object drug, potentially resulting in increased off-target effects or decreased efficacy of the drug. The objective of this work was to evaluate fundamental mechanisms underlying the clinically observed goldenseal-midazolam interaction. Results support the use of an integrated approach involving established in vitro assays, clinical evaluation, and physiologically based pharmacokinetic modeling to elucidate the complex interplay between multiple phytoconstituents and various pharmacokinetic processes driving a drug interaction.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Berberine / Biological Products / Hydrastis / Alkaloids Type of study: Prognostic_studies Limits: Adult / Humans Language: En Journal: J Pharmacol Exp Ther Year: 2023 Type: Article

Full text: 1 Database: MEDLINE Main subject: Berberine / Biological Products / Hydrastis / Alkaloids Type of study: Prognostic_studies Limits: Adult / Humans Language: En Journal: J Pharmacol Exp Ther Year: 2023 Type: Article