Your browser doesn't support javascript.
loading
Topological magnetic structure generation using VAE-GAN hybrid model and discriminator-driven latent sampling.
Park, S M; Yoon, H G; Lee, D B; Choi, J W; Kwon, H Y; Won, C.
Affiliation
  • Park SM; Department of Physics, Kyung Hee University, Seoul, 02447, South Korea.
  • Yoon HG; Department of Physics, Kyung Hee University, Seoul, 02447, South Korea.
  • Lee DB; Department of Physics, Kyung Hee University, Seoul, 02447, South Korea.
  • Choi JW; Department of Battery-Smart Factory, Korea University, Seoul, 02841, South Korea.
  • Kwon HY; Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
  • Won C; Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea. soky572@gmail.com.
Sci Rep ; 13(1): 20377, 2023 Nov 21.
Article in En | MEDLINE | ID: mdl-37989882
Recently, deep generative models using machine intelligence are widely utilized to investigate scientific systems by generating scientific data. In this study, we experiment with a hybrid model of a variational autoencoder (VAE) and a generative adversarial network (GAN) to generate a variety of plausible two-dimensional magnetic topological structure data. Due to the topological properties in the system, numerous and diverse metastable magnetic structures exist, and energy and topological barriers separate them. Thus, generating a variety of plausible spin structures avoiding those barrier states is a challenging problem. The VAE-GAN hybrid model can present an effective approach to this problem because it brings the advantages of both VAE's diversity and GAN's fidelity. It allows one to perform various applications including searching a desired sample from a variety of valid samples. Additionally, we perform a discriminator-driven latent sampling (DDLS) using our hybrid model to improve the quality of generated samples. We confirm that DDLS generates various plausible data with large coverage, following the topological rules of the target system.

Full text: 1 Database: MEDLINE Language: En Journal: Sci Rep Year: 2023 Type: Article Affiliation country: Korea (South)

Full text: 1 Database: MEDLINE Language: En Journal: Sci Rep Year: 2023 Type: Article Affiliation country: Korea (South)