Your browser doesn't support javascript.
loading
Risk factors for tick attachment in companion animals in Great Britain: a spatiotemporal analysis covering 2014-2021.
Arsevska, Elena; Hengl, Tomislav; Singleton, David A; Noble, Peter-John M; Caminade, Cyril; Eneanya, Obiora A; Jones, Philip H; Medlock, Jolyon M; Hansford, Kayleigh M; Bonannella, Carmelo; Radford, Alan D.
Affiliation
  • Arsevska E; Unit for Animals, Health, Territories, Risks and Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), 34980, Montferrier-sur-Lez, France. elena.arsevska@cirad.fr.
  • Hengl T; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, CH64 7TE, Neston, UK. elena.arsevska@cirad.fr.
  • Singleton DA; OpenGeoHub Foundation, 6708 PW, Wageningen, The Netherlands.
  • Noble PM; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, CH64 7TE, Neston, UK.
  • Caminade C; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, CH64 7TE, Neston, UK.
  • Eneanya OA; Earth System Physics Department, Abdus Salam International Centre for Theoretical Physics (ICTP), 34151, Trieste, Italy.
  • Jones PH; Health Programs, The Carter Center, 30307, Atlanta, Georgia, USA.
  • Medlock JM; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, CH64 7TE, Neston, UK.
  • Hansford KM; Medical Entomology and Zoonoses Ecology, UK Health Security Agency, SP4 0JG, Salisbury, UK.
  • Bonannella C; NIHR Health Protection Research Unit in Environmental Change and Health, WC1E 7HT, London, UK.
  • Radford AD; Medical Entomology and Zoonoses Ecology, UK Health Security Agency, SP4 0JG, Salisbury, UK.
Parasit Vectors ; 17(1): 29, 2024 Jan 22.
Article in En | MEDLINE | ID: mdl-38254168
ABSTRACT

BACKGROUND:

Ticks are an important driver of veterinary health care, causing irritation and sometimes infection to their hosts. We explored epidemiological and geo-referenced data from > 7 million electronic health records (EHRs) from cats and dogs collected by the Small Animal Veterinary Surveillance Network (SAVSNET) in Great Britain (GB) between 2014 and 2021 to assess the factors affecting tick attachment in an individual and at a spatiotemporal level.

METHODS:

EHRs in which ticks were mentioned were identified by text mining; domain experts confirmed those with ticks on the animal. Tick presence/absence records were overlaid with a spatiotemporal series of climate, environment, anthropogenic and host distribution factors to produce a spatiotemporal regression matrix. An ensemble machine learning spatiotemporal model was used to fine-tune hyperparameters for Random Forest, Gradient-boosted Trees and Generalized Linear Model regression algorithms, which were then used to produce a final ensemble meta-learner to predict the probability of tick attachment across GB at a monthly interval and averaged long-term through 2014-2021 at a spatial resolution of 1 km. Individual host factors associated with tick attachment were also assessed by conditional logistic regression on a matched case-control dataset.

RESULTS:

In total, 11,741 consultations were identified in which a tick was recorded. The frequency of tick records was low (0.16% EHRs), suggesting an underestimation of risk. That said, increased odds for tick attachment in cats and dogs were associated with younger adult ages, longer coat length, crossbreeds and unclassified breeds. In cats, males and entire animals had significantly increased odds of recorded tick attachment. The key variables controlling the spatiotemporal risk for tick attachment were climatic (precipitation and temperature) and vegetation type (Enhanced Vegetation Index). Suitable areas for tick attachment were predicted across GB, especially in forests and grassland areas, mainly during summer, particularly in June.

CONCLUSIONS:

Our results can inform targeted health messages to owners and veterinary practitioners, identifying those animals, seasons and areas of higher risk for tick attachment and allowing for more tailored prophylaxis to reduce tick burden, inappropriate parasiticide treatment and potentially TBDs in companion animals and humans. Sentinel networks like SAVSNET represent a novel complementary data source to improve our understanding of tick attachment risk for companion animals and as a proxy of risk to humans.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Algorithms / Pets Type of study: Etiology_studies / Prognostic_studies / Risk_factors_studies Limits: Adult / Animals / Female / Humans / Male Country/Region as subject: Europa Language: En Journal: Parasit Vectors Year: 2024 Type: Article Affiliation country: France

Full text: 1 Database: MEDLINE Main subject: Algorithms / Pets Type of study: Etiology_studies / Prognostic_studies / Risk_factors_studies Limits: Adult / Animals / Female / Humans / Male Country/Region as subject: Europa Language: En Journal: Parasit Vectors Year: 2024 Type: Article Affiliation country: France