Your browser doesn't support javascript.
loading
Comparative kinetics of humans and non-human primates during vertical climbing.
Young, Melody W; English, Hannah M; Dickinson, Edwin; Kantounis, Stratos J; Chernik, Noah D; Cannata, Matthew J; Lynch, Samantha K; Jacobson, Reuben N; Virga, James Q; Lopez, Alexander; Granatosky, Michael C.
Affiliation
  • Young MW; Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
  • English HM; Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
  • Dickinson E; Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
  • Kantounis SJ; Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
  • Chernik ND; Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
  • Cannata MJ; Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
  • Lynch SK; Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
  • Jacobson RN; Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
  • Virga JQ; Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
  • Lopez A; School of Health Professions, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
  • Granatosky MC; Inclusive Sports and Fitness, Holbrook, NY 11741, USA.
J Exp Biol ; 227(7)2024 Apr 01.
Article in En | MEDLINE | ID: mdl-38426398
ABSTRACT
Climbing represents a critical behavior in the context of primate evolution. However, anatomically modern human populations are considered ill-suited for climbing. This adaptation can be attributed to the evolution of striding bipedalism, redirecting anatomical traits away from efficient climbing. Although prior studies have speculated on the kinetic consequences of this anatomical reorganization, there is a lack of data on the force profiles of human climbers. This study utilized high-speed videography and force plate analysis to assess single limb forces during climbing from 44 human participants of varying climbing experience and compared these data with climbing data from eight species of non-human primates (anthropoids and strepsirrhines). Contrary to expectations, experience level had no significant effect on the magnitude of single limb forces in humans. Experienced climbers did, however, demonstrate a predictable relationship between center of mass position and peak normal forces, suggesting a better ability to modulate forces during climbing. Humans exhibited significantly higher peak propulsive forces in the hindlimb compared with the forelimb and greater hindlimb dominance overall compared with non-human primates. All species sampled demonstrated exclusively tensile forelimbs and predominantly compressive hindlimbs. Strepsirrhines exhibited a pull-push transition in normal forces, while anthropoid primates, including humans, did not. Climbing force profiles are remarkably stereotyped across humans, reflecting the universal mechanical demands of this form of locomotion. Extreme functional differentiation between forelimbs and hindlimbs in humans may help to explain the evolution of bipedalism in ancestrally climbing hominoids.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Primates / Locomotion Limits: Animals / Humans Language: En Journal: J Exp Biol Year: 2024 Type: Article Affiliation country: United States

Full text: 1 Database: MEDLINE Main subject: Primates / Locomotion Limits: Animals / Humans Language: En Journal: J Exp Biol Year: 2024 Type: Article Affiliation country: United States