Your browser doesn't support javascript.
loading
ABSTRACT
The coordinated biomechanical performance, such as uterine stretch and cervical barrier function, within maternal reproductive tissues facilitates healthy human pregnancy and birth. Quantifying normal biomechanical function and detecting potentially detrimental biomechanical dysfunction (e.g., cervical insufficiency, uterine overdistention, premature rupture of membranes) is difficult, largely due to minimal data on the shape and size of maternal anatomy and material properties of tissue across gestation. This study quantitates key structural features of human pregnancy to fill this knowledge gap and facilitate three-dimensional modeling for biomechanical pregnancy simulations to deeply explore pregnancy and childbirth. These measurements include the longitudinal assessment of uterine and cervical dimensions, fetal weight, and cervical stiffness in 47 low-risk pregnancies at four time points during gestation (late first, middle second, late second, and middle third trimesters). The uterine and cervical size were measured via 2-dimensional ultrasound, and cervical stiffness was measured via cervical aspiration. Trends in uterine and cervical measurements were assessed as time-course slopes across pregnancy and between gestational time points, accounting for specific participants. Patient-specific computational solid models of the uterus and cervix, generated from the ultrasonic measurements, were used to estimate deformed uterocervical volume. Results show that for this low-risk cohort, the uterus grows fastest in the inferior-superior direction from the late first to middle second trimester and fastest in the anterior-posterior and left-right direction between the middle and late second trimester. Contemporaneously, the cervix softens and shortens. It softens fastest from the late first to the middle second trimester and shortens fastest between the late second and middle third trimester. Alongside the fetal weight estimated from ultrasonic measurements, this work presents holistic maternal and fetal patient-specific biomechanical measurements across gestation.