Your browser doesn't support javascript.
loading
Dedifferentiation-like reprogramming of degenerative nucleus pulposus cells into notochordal-like cells by defined factors.
Zhang, Yuang; Liang, Chengzhen; Xu, Haibin; Li, Yi; Xia, Kaishun; Wang, Liyin; Huang, Xianpeng; Chen, Jiangjie; Shu, Jiawei; Cheng, Feng; Shi, Kesi; Wang, Jingkai; Tao, Yiqing; Wang, Shaoke; Zhang, Yongxiang; Li, Hao; Feng, Shoumin; Li, Fangcai; Zhou, Xiaopeng; Chen, Qixin.
Affiliation
  • Zhang Y; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Liang C; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Rese
  • Xu H; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Li Y; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Xia K; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Wang L; Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University; Shanghai 200031, China.
  • Huang X; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Chen J; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Shu J; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Cheng F; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Shi K; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Wang J; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Rese
  • Tao Y; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Rese
  • Wang S; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Zhang Y; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Li H; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Feng S; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China.
  • Li F; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Rese
  • Zhou X; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Rese
  • Chen Q; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Rese
Mol Ther ; 32(8): 2563-2583, 2024 Aug 07.
Article in En | MEDLINE | ID: mdl-38879755
ABSTRACT
The extensive degeneration of functional somatic cells and the depletion of endogenous stem/progenitor populations present significant challenges to tissue regeneration in degenerative diseases. Currently, a cellular reprogramming approach enabling directly generating corresponding progenitor populations from degenerative somatic cells remains elusive. The present study focused on intervertebral disc degeneration (IVDD) and identified a three-factor combination (OCT4, FOXA2, TBXT [OFT]) that could induce the dedifferentiation-like reprogramming of degenerative nucleus pulposus cells (dNPCs) toward induced notochordal-like cells (iNCs). Single-cell transcriptomics dissected the transitions of cell identity during reprogramming. Further, OCT4 was found to directly interact with bromodomain PHD-finger transcription factor to remodel the chromatin during the early phases, which was crucial for initiating this dedifferentiation-like reprogramming. In rat models, intradiscal injection of adeno-associated virus carrying OFT generated iNCs from in situ dNPCs and reversed IVDD. These results collectively present a proof-of-concept for dedifferentiation-like reprogramming of degenerated somatic cells into corresponding progenitors through the development of a factor-based strategy, providing a promising approach for regeneration in degenerative disc diseases.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Cellular Reprogramming / Cell Dedifferentiation / Intervertebral Disc Degeneration / Nucleus Pulposus / Notochord Limits: Animals / Humans Language: En Journal: Mol Ther Journal subject: BIOLOGIA MOLECULAR / TERAPEUTICA Year: 2024 Type: Article Affiliation country: China

Full text: 1 Database: MEDLINE Main subject: Cellular Reprogramming / Cell Dedifferentiation / Intervertebral Disc Degeneration / Nucleus Pulposus / Notochord Limits: Animals / Humans Language: En Journal: Mol Ther Journal subject: BIOLOGIA MOLECULAR / TERAPEUTICA Year: 2024 Type: Article Affiliation country: China