Your browser doesn't support javascript.
loading
Catecholamine induces endothelial dysfunction via Angiotensin II and intermediate conductance calcium activated potassium channel.
Fan, Xuehui; Yang, Guoqiang; Yang, Zhen; Uhlig, Stefanie; Sattler, Katherine; Bieback, Karen; Hamdani, Nazha; El-Battrawy, Ibrahim; Duerschmied, Daniel; Zhou, Xiaobo; Akin, Ibrahim.
Affiliation
  • Fan X; Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Lab
  • Yang G; Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest M
  • Yang Z; Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany.
  • Uhlig S; Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  • Sattler K; Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Lab
  • Bieback K; Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  • Hamdani N; Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology and Angiology, Berg
  • El-Battrawy I; Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology and Angiology, Berg
  • Duerschmied D; Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Lab
  • Zhou X; Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Lab
  • Akin I; Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, Mannheim, Germany; Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Lab
Biomed Pharmacother ; 177: 116928, 2024 Aug.
Article in En | MEDLINE | ID: mdl-38889637
ABSTRACT
Endothelial dysfunction contributes to the pathogenesis of Takotsubo syndrome (TTS). However, the exact mechanism underlying endothelial dysfunction in the setting of TTS has not been completely clarified. This study aims to investigate the roles of angiotensin II (Ang II) and intermediate-conductance Ca2+-activated K+ (SK4) channels in catecholamine-induced endothelial dysfunction. Human cardiac microvascular endothelial cells (HCMECs) were exposed to 100 µM epinephrine (Epi), mimicking the setting of TTS. Epi treatment increased the ET-1 concentration and reduced NO levels in HCMECs. Importantly, the effects of Epi were found to be mitigated in the presence of Ang II receptor blockers. Furthermore, Ang II mimicked Epi effects on ET-1 and NO production. Additionally, Ang II inhibited tube formation and increased cell apoptosis. The effects of Ang II could be reversed by an SK4 activator NS309 and mimicked by an SK4 channel blocker TRAM-34. Ang II also inhibited the SK4 channel current (ISK4) without affecting its expression level. Ang II could depolarize the cell membrane potential. Ang II promoted ROS release and reduced protein kinase A (PKA) expression. A ROS blocker prevented Ang II effect on ISK4. The PKA activator Sp-8-Br-cAMPS increased SK4 channel currents. Epinephrine enhanced the activity of ACE by activating the α1 receptor/Gq/PKC signal pathway, thereby promoting the secretion of Ang II. The study suggested that high-level catecholamine can increase Ang II release from endothelial cells by α1 receptors/Gq/PKC signal pathway. Ang II can inhibit SK4 channel current by increasing ROS generation and reducing PKA expression, thereby contributing to endothelial dysfunction.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Angiotensin II / Catecholamines / Reactive Oxygen Species / Endothelial Cells Limits: Humans Language: En Journal: Biomed Pharmacother Year: 2024 Type: Article

Full text: 1 Database: MEDLINE Main subject: Angiotensin II / Catecholamines / Reactive Oxygen Species / Endothelial Cells Limits: Humans Language: En Journal: Biomed Pharmacother Year: 2024 Type: Article