Your browser doesn't support javascript.
loading
Elucidating High Initial Coulombic Efficiency, Pseudocapacitive Kinetics and Charge Storage Mechanism of Antiperovskite Carbide Ni3ZnC0.7@rGO Anode for Fast Sodium Storage in Ether Electrolyte.
Fang, Qi; Ding, Rui; Yan, Miao; Li, Yi; Guo, Jian; Xie, Jinmei; Zhang, Yuzhen; Yan, Ziyang; He, Yuming; Chen, Zhiqiang; Sun, Xiujuan; Liu, Enhui.
Affiliation
  • Fang Q; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
  • Ding R; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
  • Yan M; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
  • Li Y; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
  • Guo J; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
  • Xie J; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
  • Zhang Y; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
  • Yan Z; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
  • He Y; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
  • Chen Z; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
  • Sun X; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
  • Liu E; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
Small ; : e2403397, 2024 Jun 26.
Article in En | MEDLINE | ID: mdl-38925625
ABSTRACT
To explore novel electrode materials with in-depth elucidation of initial coulombic efficiency (ICE), kinetics, and charge storage mechanisms is of great challenge for Na-ion storage. Herein, a novel 3D antiperovskite carbide Ni3ZnC0.7@rGO anode coupled with ether-based electrolyte is reported for fast Na-ion storage, exhibiting superior performance than ester-based electrolyte. Electrochemical tests and density functional theory (DFT) calculations show that Ni3ZnC0.7@rGO anode with ether-based electrolyte can promote charge/ion transport and lower Na+ diffusion energy barrier, thereby improving ICE, reversible capacity, rate, and cycling performance. Cross-sectional-morphology and depth profiling surface chemistry demonstrate that not only a thinner and more homogeneous reaction interface layer with less side effects but also a superior solid electrolyte interface (SEI) film with a high proportion of inorganic components are formed in the ether-based electrolyte, which accelerates Na+ transport and is the significant reason for the improvement of ICE and other electrochemical properties. Meanwhile, electrochemical and ex situ measurements have revealed conversion, alloying, and co-intercalation hybrid mechanisms of the Ni3ZnC0.7@rGO anode based on ether electrolyte. Interestingly, the Na-ion capacitors (SICs) designed by pairing with activated carbon (AC) cathode exhibit favorable electrochemical performance. Overall, this work provides deep insights on developing advanced materials for fast Na-ion storage.
Key words

Full text: 1 Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Type: Article

Full text: 1 Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Type: Article