Your browser doesn't support javascript.
loading
A novel method for analyzing DSCE-images with an application to tumor grading.
Slotboom, Johannes; Schaer, Ralph; Ozdoba, Christoph; Reinert, Michael; Vajtai, Istvan; El-Koussy, Marwan; Kiefer, Claus; Zbinden, Martin; Schroth, Gerhard; Wiest, Roland.
Afiliación
  • Slotboom J; Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland. johannes.slotboom@insel.ch
Invest Radiol ; 43(12): 843-53, 2008 Dec.
Article en En | MEDLINE | ID: mdl-19002056
OBJECTIVES: (a) The development of a novel analysis method, named Dynamic pixel intensity Histogram Analysis (DHA) allowing for pixel intensity-histogram-model-parameter fitting of arbitrary-shaped regions defined in dynamic-susceptibility-contrast-enhanced (DSCE) difference MR-image time-series, and (b) its prospective application and evaluation for glioma grading. MATERIALS AND METHODS: For each difference-image, pixel intensity histograms of arbitrary-shaped ROIs were computed and fitted using the Levenberg-Marquardt algorithm. Time-dependent histogram center-position- and width-parameters are computed during bolus-passage. The method was applied to 25 patients with low and high grade gliomas. RESULTS: During bolus outflow-time, histogram-center-position-parameter and histogram-width-parameter reach highest significance levels and discriminate gliomas of different grades. The histogram center-position-parameter discriminated grade-II from grade-III, grade-II from grade-IV but not grade-III from grade-IV. The observed histogram width-parameters discriminated grade-II from grade-III (P < 0.00022), grade-II from grade-IV (P <8.3 10), and grade-III from grade-IV (P < 0.00063). CONCLUSIONS: DHA is a easy-to-use method for glioma grading; the histogram width parameter is best indicator for histologic grade.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Compuestos Organometálicos / Algoritmos / Neoplasias Encefálicas / Interpretación de Imagen Asistida por Computador / Aumento de la Imagen / Glioma Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Invest Radiol Año: 2008 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Compuestos Organometálicos / Algoritmos / Neoplasias Encefálicas / Interpretación de Imagen Asistida por Computador / Aumento de la Imagen / Glioma Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Invest Radiol Año: 2008 Tipo del documento: Article País de afiliación: Suiza