Your browser doesn't support javascript.
loading
Rapid, long-term labeling of cells in the developing and adult rodent visual cortex using double-stranded adeno-associated viral vectors.
Lowery, Rebecca L; Zhang, Yu; Kelly, Emily A; Lamantia, Cassandra E; Harvey, Brandon K; Majewska, Ania K.
Afiliación
  • Lowery RL; Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York, USA.
Dev Neurobiol ; 69(10): 674-88, 2009 Sep 01.
Article en En | MEDLINE | ID: mdl-19551873
Chronic in vivo imaging studies of the brain require a labeling method that is fast, long-lasting, efficient, nontoxic, and cell-type specific. Over the last decade, adeno-associated virus (AAV) has been used to stably express fluorescent proteins in neurons in vivo. However, AAV's main limitation for many studies (such as those of neuronal development) is the necessity of second-strand DNA synthesis, which delays peak transgene expression. The development of double-stranded AAV (dsAAV) vectors has overcome this limitation, allowing rapid transgene expression. Here, we have injected different serotypes (1, 2, 6, 7, 8, and 9) of a dsAAV vector carrying the green fluorescent protein (GFP) gene into the developing and adult mouse visual cortex and characterized its expression. We observed labeling of both neurons and astrocytes with serotype-specific tropism. dsAAV-GFP labeling showed high levels of neuronal GFP expression as early as 2 days postinjection and as long as a month, surpassing conventional AAV's onset of expression and matching its longevity. Neurons labeled with dsAAV-GFP appeared structurally and electrophysiologically identical to nonlabeled neurons, suggesting that dsAAV-GFP is neither cytotoxic nor alters normal neuronal function. We also demonstrated that dsAAV-labeled cells can be imaged with subcellular resolution in vivo over multiple days. We conclude that dsAAV is an excellent vector for rapid labeling and long-term in vivo imaging studies of astrocytes and neurons on the single cell level within the developing and adult visual cortex.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Coloración y Etiquetado / Corteza Visual / Dependovirus / Vectores Genéticos Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Dev Neurobiol Asunto de la revista: BIOLOGIA / NEUROLOGIA Año: 2009 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Coloración y Etiquetado / Corteza Visual / Dependovirus / Vectores Genéticos Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Dev Neurobiol Asunto de la revista: BIOLOGIA / NEUROLOGIA Año: 2009 Tipo del documento: Article País de afiliación: Estados Unidos