Inferring cancer subnetwork markers using density-constrained biclustering.
Bioinformatics
; 26(18): i625-31, 2010 Sep 15.
Article
en En
| MEDLINE
| ID: mdl-20823331
MOTIVATION: Recent genomic studies have confirmed that cancer is of utmost phenotypical complexity, varying greatly in terms of subtypes and evolutionary stages. When classifying cancer tissue samples, subnetwork marker approaches have proven to be superior over single gene marker approaches, most importantly in cross-platform evaluation schemes. However, prior subnetwork-based approaches do not explicitly address the great phenotypical complexity of cancer. RESULTS: We explicitly address this and employ density-constrained biclustering to compute subnetwork markers, which reflect pathways being dysregulated in many, but not necessarily all samples under consideration. In breast cancer we achieve substantial improvements over all cross-platform applicable approaches when predicting TP53 mutation status in a well-established non-cross-platform setting. In colon cancer, we raise prediction accuracy in the most difficult instances from 87% to 93% for cancer versus non-cancer and from 83% to (astonishing) 92%, for with versus without liver metastasis, in well-established cross-platform evaluation schemes. AVAILABILITY: Software is available on request.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Biomarcadores de Tumor
/
Biología Computacional
/
Redes Reguladoras de Genes
/
Neoplasias
Tipo de estudio:
Evaluation_studies
Límite:
Female
/
Humans
Idioma:
En
Revista:
Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2010
Tipo del documento:
Article
País de afiliación:
Canadá