Your browser doesn't support javascript.
loading
Inferring cancer subnetwork markers using density-constrained biclustering.
Dao, Phuong; Colak, Recep; Salari, Raheleh; Moser, Flavia; Davicioni, Elai; Schönhuth, Alexander; Ester, Martin.
Afiliación
  • Dao P; School of Computing Science, Simon Fraser University, Burnaby, Canada.
Bioinformatics ; 26(18): i625-31, 2010 Sep 15.
Article en En | MEDLINE | ID: mdl-20823331
MOTIVATION: Recent genomic studies have confirmed that cancer is of utmost phenotypical complexity, varying greatly in terms of subtypes and evolutionary stages. When classifying cancer tissue samples, subnetwork marker approaches have proven to be superior over single gene marker approaches, most importantly in cross-platform evaluation schemes. However, prior subnetwork-based approaches do not explicitly address the great phenotypical complexity of cancer. RESULTS: We explicitly address this and employ density-constrained biclustering to compute subnetwork markers, which reflect pathways being dysregulated in many, but not necessarily all samples under consideration. In breast cancer we achieve substantial improvements over all cross-platform applicable approaches when predicting TP53 mutation status in a well-established non-cross-platform setting. In colon cancer, we raise prediction accuracy in the most difficult instances from 87% to 93% for cancer versus non-cancer and from 83% to (astonishing) 92%, for with versus without liver metastasis, in well-established cross-platform evaluation schemes. AVAILABILITY: Software is available on request.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Biomarcadores de Tumor / Biología Computacional / Redes Reguladoras de Genes / Neoplasias Tipo de estudio: Evaluation_studies Límite: Female / Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2010 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Biomarcadores de Tumor / Biología Computacional / Redes Reguladoras de Genes / Neoplasias Tipo de estudio: Evaluation_studies Límite: Female / Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2010 Tipo del documento: Article País de afiliación: Canadá