Your browser doesn't support javascript.
loading
Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes.
Ravassa, Susana; Zudaire, Amaia; Carr, Richard D; Díez, Javier.
Afiliación
  • Ravassa S; Division of Cardiovascular Sciences, Center for Applied Medical Research, University Clinic, School of Medicine, University of Navarra, Pamplona, Spain. sravassa@unav.es
Am J Physiol Heart Circ Physiol ; 300(4): H1361-72, 2011 Apr.
Article en En | MEDLINE | ID: mdl-21278133
Activation of apoptosis contributes to cardiomyocyte dysfunction and death in diabetic cardiomyopathy. The peptide glucagon-like peptide-1 (GLP-1), a hormone that is the basis of emerging therapy for type 2 diabetic patients, has cytoprotective actions in different cellular models. We investigated whether GLP-1 inhibits apoptosis in HL-1 cardiomyocytes stimulated with staurosporine, palmitate, and ceramide. Studies were performed in HL-1 cardiomyocytes. Apoptosis was induced by incubating HL-1 cells with staurosporine (175 nM), palmitate (135 µM), or ceramide (15 µM) for 24 h. In staurosporine-stimulated HL-1 cardiomyocytes, phosphatidylserine exposure, Bax-to-Bcl-2 ratio, Bad phosphorylation (Ser(136)), BNIP3 expression, mitochondrial membrane depolarization, cytochrome c release, caspase-3 activation, DNA fragmentation, and mammalian target of rapamycin (mTOR)/p70S6K phosphorylation (Ser(2448) and Thr(389), respectively) were assessed. Apoptotic hallmarks were also measured in the absence or presence of low (5 mM) and high (10 mM) concentrations of glucose. In addition, phosphatidylserine exposure and DNA fragmentation were analyzed in palmitate- and ceramide-stimulated cells. Staurosporine increased apoptosis in HL-1 cardiomyocytes. GLP-1 (100 nM) partially inhibited staurosporine-induced mitochondrial membrane depolarization and completely blocked the rest of the staurosporine-induced apoptotic changes. This cytoprotective effect was mainly mediated by phosphatidylinositol 3-kinase (PI3K) and partially dependent on ERK1/2. Increasing concentrations of glucose did not influence GLP-1-induced protection against staurosporine. Furthermore, GLP-1 inhibited palmitate- and ceramide-induced phosphatidylserine exposure and DNA fragmentation. Incretin GLP-1 protects HL-1 cardiomyocytes against activation of apoptosis. This cytoprotective ability is mediated mainly by the PI3K pathway and partially by the ERK1/2 pathway and seems to be glucose independent. It is proposed that therapies based on GLP-1 may contribute to prevent cardiomyocyte apoptosis.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Apoptosis / Miocitos Cardíacos / Péptido 1 Similar al Glucagón / Incretinas Límite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Asunto de la revista: CARDIOLOGIA / FISIOLOGIA Año: 2011 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Apoptosis / Miocitos Cardíacos / Péptido 1 Similar al Glucagón / Incretinas Límite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Asunto de la revista: CARDIOLOGIA / FISIOLOGIA Año: 2011 Tipo del documento: Article País de afiliación: España