Your browser doesn't support javascript.
loading
Positional identity of murine mesenchymal stem cells resident in different organs is determined in the postsegmentation mesoderm.
Sági, Bernadett; Maraghechi, Pouneh; Urbán, Veronika S; Hegyi, Beáta; Szigeti, Anna; Fajka-Boja, Roberta; Kudlik, Gyöngyi; Német, Katalin; Monostori, Eva; Gócza, Elen; Uher, Ferenc.
Afiliación
  • Sági B; National Blood Service, Stem Cell Biology Unit, Budapest, Hungary.
Stem Cells Dev ; 21(5): 814-28, 2012 Mar 20.
Article en En | MEDLINE | ID: mdl-22149974
Although mesenchymal stem cells (MSCs) of distinct tissue origin have a large number of similarities and differences, it has not been determined so far whether tissue-resident MSCs are the progenies of one ancestor cell lineage or the results of parallel cell developmental events. Here we compared the expression levels of 177 genes in murine MSCs derived from adult and juvenile bone marrow and adult adipose tissue, as well as juvenile spleen, thymus, and aorta wall by quantitative real-time polymerase chain reaction and the results were partially validated at protein level. All MSC lines uniformly expressed a large set of genes including well-known mesenchymal markers, such as α-smooth muscle actin, collagen type I α-chain, GATA6, Mohawk, and vimentin. In contrast, pluripotency genes and the early mesodermal marker T-gene were not expressed. On the other hand, different MSC lines consistently expressed distinct patterns of Hox genes determining the positional identity of a given cell population. Moreover, MSCs of different origin expressed a few other transcription factors also reflecting their topological identity and so the body segment or organ to which they normally contributed in vivo: (1) thymus-derived cells specifically expressed Tbx5 and Pitx2; (2) spleen-derived MSCs were characterized with Tlx1 and Nkx2.5; (3) Pitx1 designated femoral bone marrow cells and (4) En2 appeared in aorta wall-derived MSCs. Thus, MSCs exhibited topographic identity and memory even after long-term cultivation in vitro. On the basis of these results, we suggest that postnatal MSCs isolated from different anatomical sites descend from precursor cells developing in the postsegmentation mesoderm.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Regulación del Desarrollo de la Expresión Génica / Perfilación de la Expresión Génica / Células Madre Mesenquimatosas / Mesodermo Límite: Animals Idioma: En Revista: Stem Cells Dev Asunto de la revista: HEMATOLOGIA Año: 2012 Tipo del documento: Article País de afiliación: Hungria

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Regulación del Desarrollo de la Expresión Génica / Perfilación de la Expresión Génica / Células Madre Mesenquimatosas / Mesodermo Límite: Animals Idioma: En Revista: Stem Cells Dev Asunto de la revista: HEMATOLOGIA Año: 2012 Tipo del documento: Article País de afiliación: Hungria