Your browser doesn't support javascript.
loading
Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology.
Marquez-Lago, T T; Leier, A; Burrage, K.
Afiliación
  • Marquez-Lago TT; Okinawa Institute of Science and Technology, Kunigami, Japan. tatiana.marquez@oist.jp
IET Syst Biol ; 6(4): 134-42, 2012 Aug.
Article en En | MEDLINE | ID: mdl-23039694
There have been many recent studies from both experimental and simulation perspectives in order to understand the effects of spatial crowding in molecular biology. These effects manifest themselves in protein organisation on the plasma membrane, on chemical signalling within the cell and in gene regulation. Simulations are usually done with lattice- or meshless-based random walks but insights can also be gained through the computation of the underlying probability density functions of these stochastic processes. Until recently much of the focus had been on continuous time random walks, but some very recent work has suggested that fractional Brownian motion may be a good descriptor of spatial crowding effects in some cases. The study compares both fractional Brownian motion and continuous time random walks and highlights how well they can represent different types of spatial crowding and physical obstacles. Simulated spatial data, mimicking experimental data, was first generated by using the package Smoldyn. We then attempted to characterise this data through continuous time anomalously diffusing random walks and multifractional Brownian motion (MFBM) by obtaining MFBM paths that match the statistical properties of our sample data. Although diffusion around immovable obstacles can be reasonably characterised by a single Hurst exponent, we find that diffusion in a crowded environment seems to exhibit multifractional properties in the form of a different short- and long-time behaviour.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Biopolímeros / Simulación por Computador / Transducción de Señal / Modelos Estadísticos / Coloides / Difusión Tipo de estudio: Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: IET Syst Biol Asunto de la revista: BIOLOGIA / BIOTECNOLOGIA Año: 2012 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Biopolímeros / Simulación por Computador / Transducción de Señal / Modelos Estadísticos / Coloides / Difusión Tipo de estudio: Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: IET Syst Biol Asunto de la revista: BIOLOGIA / BIOTECNOLOGIA Año: 2012 Tipo del documento: Article País de afiliación: Japón