Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles.
Biomaterials
; 34(17): 4339-46, 2013 Jun.
Article
en En
| MEDLINE
| ID: mdl-23478034
Using poly(propylene sulfide) (PPS) and poly(ethylene glycol) (PEG) as components of a nanocarrier platform, we sought to compare immune responses induced by PPS-bl-PEG polymersomes (PSs; watery-core structures, with antigen incorporated within the PSs) and PEG-stabilized PPS nanoparticles (NPs; solid-core structures, with antigen conjugated upon the NP surface). We have previously shown strong CD8(+) T cell responses to antigen conjugated to NPs via a disulfide link, and here we investigated the extent to which antigen incorporated within oxidatively-sensitive PSs could induce CD4(+) or CD8(+) T cell responses. C57BL/6 mice were subcutaneously immunized with free ovalbumin (OVA) as a model antigen, or equivalent doses of OVA-loaded into PSs, conjugated onto NPs, or given as a mixture of the two. Free CpG was used as an adjuvant. Antigen-loaded PSs induced enhanced frequencies of antigen-specific CD4(+) T cells in the spleen, lymph nodes and lungs as compared to the NP formulation, whereas antigen-conjugated NPs induced stronger CD8(+) T cell responses. Co-administration of both PSs and NPs elicited T cell immunity characteristic of the two nanocarriers at the same time, i.e. both strong CD4(+) and CD8(+) T cell responses. These results have important implications for particulate-based vaccine design and highlight the potential of using different antigen-delivery systems for the induction of both T helper and cytotoxic T lymphocyte immune responses.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Polietilenglicoles
/
Sulfuros
/
Linfocitos T
/
Ovalbúmina
/
Nanopartículas
/
Inmunidad
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Biomaterials
Año:
2013
Tipo del documento:
Article
País de afiliación:
Suiza