Your browser doesn't support javascript.
loading
Graph-based inter-subject pattern analysis of FMRI data.
Takerkart, Sylvain; Auzias, Guillaume; Thirion, Bertrand; Ralaivola, Liva.
Afiliación
  • Takerkart S; Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, Marseille, France; Laboratoire d'Informatique Fondamentale UMR 7279, Aix Marseille Université, CNRS, Marseille, France.
  • Auzias G; Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, Marseille, France.
  • Thirion B; Parietal Team, INRIA Saclay - Ile-de-France, Saclay, France.
  • Ralaivola L; Laboratoire d'Informatique Fondamentale UMR 7279, Aix Marseille Université, CNRS, Marseille, France.
PLoS One ; 9(8): e104586, 2014.
Article en En | MEDLINE | ID: mdl-25127129
In brain imaging, solving learning problems in multi-subjects settings is difficult because of the differences that exist across individuals. Here we introduce a novel classification framework based on group-invariant graphical representations, allowing to overcome the inter-subject variability present in functional magnetic resonance imaging (fMRI) data and to perform multivariate pattern analysis across subjects. Our contribution is twofold: first, we propose an unsupervised representation learning scheme that encodes all relevant characteristics of distributed fMRI patterns into attributed graphs; second, we introduce a custom-designed graph kernel that exploits all these characteristics and makes it possible to perform supervised learning (here, classification) directly in graph space. The well-foundedness of our technique and the robustness of the performance to the parameter setting are demonstrated through inter-subject classification experiments conducted on both artificial data and a real fMRI experiment aimed at characterizing local cortical representations. Our results show that our framework produces accurate inter-subject predictions and that it outperforms a wide range of state-of-the-art vector- and parcel-based classification methods. Moreover, the genericity of our method makes it is easily adaptable to a wide range of potential applications. The dataset used in this study and an implementation of our framework are available at http://dx.doi.org/10.6084/m9.figshare.1086317.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / Mapeo Encefálico / Interpretación de Imagen Asistida por Computador / Neuroimagen Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / Mapeo Encefálico / Interpretación de Imagen Asistida por Computador / Neuroimagen Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Francia