Your browser doesn't support javascript.
loading
Effect of crystallization of Cu2ZnSnSxSe4-x counter electrode on the performance for efficient dye-sensitized solar cells.
Chen, Hongli; Kou, Dongxing; Chang, Zhixian; Zhou, Wenhui; Zhou, Zhengji; Wu, Sixin.
Afiliación
  • Chen H; The Key Laboratory for Special Functional Materials of MOE, Henan University , Kaifeng, 475004, P. R. China.
ACS Appl Mater Interfaces ; 6(23): 20664-9, 2014 Dec 10.
Article en En | MEDLINE | ID: mdl-25382857
Cu2ZnSnSxSe4-x (CZTSSe) counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) are commonly developed with porous structures, but their high surface area could also retard electron transport processes owing to the abundant grain boundaries. Herein, we employed a convenient solution method and a rapid heating process to prepare well crystalline CZTSSe CEs in DSSCs. The influence of crystallization of CZTSSe film on DSSCs performances was discussed in depth. The thermogravimetric analysis, phase morphology, conductivity, and electrochemical characteristics of CZTSSe films were performed. It is found that the rapid heating process is beneficial to the formation of well crystalline film with large grains. As the porosity and grain boundaries in the bulk film are dramatically reduced with the enhanced crystallization, the charge transport process is gradually improved. Using cyclic voltammogram and electrochemical impedance spectroscopy measurements, we propose that the accelerating charge transport is of great importance to the photovoltaic performances of DSSCs due to their superior electrocatalytic activities. As the highest cell efficiency was achieved, well crystalline CZTSSe is an efficient CE catalytic material.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2014 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2014 Tipo del documento: Article