Segmentation of cerebrovascular pathologies in stroke patients with spatial and shape priors.
Med Image Comput Comput Assist Interv
; 17(Pt 2): 773-80, 2014.
Article
en En
| MEDLINE
| ID: mdl-25485450
We propose and demonstrate an inference algorithm for the automatic segmentation of cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating pathologies is important for understanding the underlying mechanisms and clinical outcomes of cerebral ischemia. Manual delineation of separate pathologies is infeasible in large studies of stroke that include thousands of patients. Unlike normal brain tissues and structures, the location and shape of the lesions vary across patients, presenting serious challenges for prior-driven segmentation. Our generative model captures spatial patterns and intensity properties associated with different cerebrovascular pathologies in stroke patients. We demonstrate the resulting segmentation algorithm on clinical images of a stroke patient cohort.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Encéfalo
/
Reconocimiento de Normas Patrones Automatizadas
/
Imagen por Resonancia Magnética
/
Interpretación de Imagen Asistida por Computador
/
Técnica de Sustracción
/
Accidente Cerebrovascular
/
Leucoaraiosis
Tipo de estudio:
Diagnostic_studies
/
Etiology_studies
/
Guideline
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Med Image Comput Comput Assist Interv
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
/
INFORMATICA MEDICA
Año:
2014
Tipo del documento:
Article