Your browser doesn't support javascript.
loading
Functional significance of point mutations in stress chaperone mortalin and their relevance to Parkinson disease.
Wadhwa, Renu; Ryu, Jihoon; Ahn, Hyo Min; Saxena, Nishant; Chaudhary, Anupama; Yun, Chae-Ok; Kaul, Sunil C.
Afiliación
  • Wadhwa R; From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and.
  • Ryu J; From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and the Department of Bioengineering, Co
  • Ahn HM; From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and the Department of Bioengineering, Co
  • Saxena N; From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and.
  • Chaudhary A; From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and.
  • Yun CO; the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Korea chaeok@hanyang.ac.kr.
  • Kaul SC; From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and s-kaul@aist.go.jp.
J Biol Chem ; 290(13): 8447-56, 2015 Mar 27.
Article en En | MEDLINE | ID: mdl-25645922
Mortalin/mtHsp70/Grp75 (mot-2), a heat shock protein 70 family member, is an essential chaperone, enriched in cancers, and has been shown to possess pro-proliferative and anti-apoptosis functions. An allelic form of mouse mortalin (mot-1) that differs by two amino acids, M618V and G624R, in the C terminus substrate-binding domain has been reported. Furthermore, genome sequencing of mortalin from Parkinson disease patients identified two missense mutants, R126W and P509S. In the present study, we investigated the significance of these mutations in survival, proliferation, and oxidative stress tolerance in human cells. Using mot-1 and mot-2 recombinant proteins and specific antibodies, we performed screening to find their binding proteins and then identified ribosomal protein L-7 (RPL-7) and elongation factor-1 α (EF-1α), which differentially bind to mot-1 and mot-2, respectively. We demonstrate that mot-1, R126W, or P509S mutant (i) lacks mot-2 functions involved in carcinogenesis, such as p53 inactivation and hTERT/hnRNP-K (heterogeneous nuclear ribonucleoprotein K) activation; (ii) causes increased level of endogenous oxidative stress; (iii) results in decreased tolerance of cells to exogenous oxidative stress; and (iv) shows differential binding and impact on the RPL-7 and EF-1α proteins. These factors may mediate the transformation of longevity/pro-proliferative function of mot-2 to the premature aging/anti-proliferative effect of mutants, and hence may have significance in cellular aging, Parkinson disease pathology, and prognosis.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Mutación Puntual / Proteínas HSP70 de Choque Térmico Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Biol Chem Año: 2015 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Mutación Puntual / Proteínas HSP70 de Choque Térmico Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Biol Chem Año: 2015 Tipo del documento: Article