Your browser doesn't support javascript.
loading
Woods: A fast and accurate functional annotator and classifier of genomic and metagenomic sequences.
Sharma, Ashok K; Gupta, Ankit; Kumar, Sanjiv; Dhakan, Darshan B; Sharma, Vineet K.
Afiliación
  • Sharma AK; MetaInformatics Laboratory, Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India. Electronic address: ashoks@iiserb.ac.in.
  • Gupta A; MetaInformatics Laboratory, Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India. Electronic address: ankitg@iiserb.ac.in.
  • Kumar S; MetaInformatics Laboratory, Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India. Electronic address: drsanjivk@gmail.com.
  • Dhakan DB; MetaInformatics Laboratory, Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India. Electronic address: darshan@iiserb.ac.in.
  • Sharma VK; MetaInformatics Laboratory, Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India. Electronic address: vineetks@iiserb.ac.in.
Genomics ; 106(1): 1-6, 2015 Jul.
Article en En | MEDLINE | ID: mdl-25863333
Functional annotation of the gigantic metagenomic data is one of the major time-consuming and computationally demanding tasks, which is currently a bottleneck for the efficient analysis. The commonly used homology-based methods to functionally annotate and classify proteins are extremely slow. Therefore, to achieve faster and accurate functional annotation, we have developed an orthology-based functional classifier 'Woods' by using a combination of machine learning and similarity-based approaches. Woods displayed a precision of 98.79% on independent genomic dataset, 96.66% on simulated metagenomic dataset and >97% on two real metagenomic datasets. In addition, it performed >87 times faster than BLAST on the two real metagenomic datasets. Woods can be used as a highly efficient and accurate classifier with high-throughput capability which facilitates its usability on large metagenomic datasets.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas / Análisis de Secuencia de Proteína / Genómica / Metagenómica / Anotación de Secuencia Molecular / Aprendizaje Automático Tipo de estudio: Evaluation_studies Límite: Humans Idioma: En Revista: Genomics Asunto de la revista: GENETICA Año: 2015 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas / Análisis de Secuencia de Proteína / Genómica / Metagenómica / Anotación de Secuencia Molecular / Aprendizaje Automático Tipo de estudio: Evaluation_studies Límite: Humans Idioma: En Revista: Genomics Asunto de la revista: GENETICA Año: 2015 Tipo del documento: Article