Your browser doesn't support javascript.
loading
Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency.
Yen, Wan-Ching; Fischer, Marcus M; Axelrod, Fumiko; Bond, Christopher; Cain, Jennifer; Cancilla, Belinda; Henner, William R; Meisner, Rene; Sato, Aaron; Shah, Jalpa; Tang, Tracy; Wallace, Breanna; Wang, Min; Zhang, Chun; Kapoun, Ann M; Lewicki, John; Gurney, Austin; Hoey, Timothy.
Afiliación
  • Yen WC; OncoMed Pharmaceuticals, Inc., Redwood City, California. jean.yen@oncomed.com.
  • Fischer MM; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Axelrod F; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Bond C; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Cain J; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Cancilla B; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Henner WR; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Meisner R; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Sato A; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Shah J; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Tang T; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Wallace B; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Wang M; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Zhang C; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Kapoun AM; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Lewicki J; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Gurney A; OncoMed Pharmaceuticals, Inc., Redwood City, California.
  • Hoey T; OncoMed Pharmaceuticals, Inc., Redwood City, California.
Clin Cancer Res ; 21(9): 2084-95, 2015 May 01.
Article en En | MEDLINE | ID: mdl-25934888
PURPOSE: The Notch pathway plays an important role in both stem cell biology and cancer. Dysregulation of Notch signaling has been reported in several human tumor types. In this report, we describe the development of an antibody, OMP-59R5 (tarextumab), which blocks both Notch2 and Notch3 signaling. EXPERIMENTAL DESIGN: We utilized patient-derived xenograft tumors to evaluate antitumor effect of OMP-59R5. Immunohistochemistry, RNA microarray, real-time PCR, and in vivo serial transplantation assays were employed to investigate the mechanisms of action and pharmacodynamic readouts. RESULTS: We found that anti-Notch2/3, either as a single agent or in combination with chemotherapeutic agents was efficacious in a broad spectrum of epithelial tumors, including breast, lung, ovarian, and pancreatic cancers. Notably, the sensitivity of anti-Notch2/3 in combination with gemcitabine in pancreatic tumors was associated with higher levels of Notch3 gene expression. The antitumor effect of anti-Notch2/3 in combination with gemcitabine plus nab-paclitaxel was greater than the combination effect with gemcitabine alone. OMP-59R5 inhibits both human and mouse Notch2 and Notch3 function and its antitumor activity was characterized by a dual mechanism of action in both tumor and stromal/vascular cells in xenograft experiments. In tumor cells, anti-Notch2/3 inhibited expression of Notch target genes and reduced tumor-initiating cell frequency. In the tumor stroma, OMP-59R5 consistently inhibited the expression of Notch3, HeyL, and Rgs5, characteristic of affecting pericyte function in tumor vasculature. CONCLUSIONS: These findings indicate that blockade of Notch2/3 signaling with this cross-reactive antagonist antibody may be an effective strategy for treatment of a variety of tumor types.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Células Madre Neoplásicas / Receptores Notch / Receptor Notch2 / Anticuerpos Monoclonales / Neoplasias Experimentales / Antineoplásicos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Clin Cancer Res Asunto de la revista: NEOPLASIAS Año: 2015 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Células Madre Neoplásicas / Receptores Notch / Receptor Notch2 / Anticuerpos Monoclonales / Neoplasias Experimentales / Antineoplásicos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Clin Cancer Res Asunto de la revista: NEOPLASIAS Año: 2015 Tipo del documento: Article