Optogenetic control of molecular motors and organelle distributions in cells.
Chem Biol
; 22(5): 671-82, 2015 May 21.
Article
en En
| MEDLINE
| ID: mdl-25963241
Intracellular transport and distribution of organelles play important roles in diverse cellular functions, including cell polarization, intracellular signaling, cell survival, and apoptosis. Here, we report an optogenetic strategy to control the transport and distribution of organelles by light. This is achieved by optically recruiting molecular motors onto organelles through the heterodimerization of Arabidopsis thaliana cryptochrome 2 (CRY2) and its interacting partner CIB1. CRY2 and CIB1 dimerize within subseconds upon exposure to blue light, which requires no exogenous ligands and low intensity of light. We demonstrate that mitochondria, peroxisomes, and lysosomes can be driven toward the cell periphery upon light-induced recruitment of kinesin, or toward the cell nucleus upon recruitment of dynein. Light-induced motor recruitment and organelle movements are repeatable, reversible, and can be achieved at subcellular regions. This light-controlled organelle redistribution provides a new strategy for studying the causal roles of organelle transport and distribution in cellular functions in living cells.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Proteínas de Arabidopsis
/
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
/
Criptocromos
/
Optogenética
Límite:
Animals
Idioma:
En
Revista:
Chem Biol
Asunto de la revista:
BIOLOGIA
/
BIOQUIMICA
/
QUIMICA
Año:
2015
Tipo del documento:
Article
País de afiliación:
Estados Unidos