Optimization of Statistical Methods Impact on Quantitative Proteomics Data.
J Proteome Res
; 14(10): 4118-26, 2015 Oct 02.
Article
en En
| MEDLINE
| ID: mdl-26321463
As tools for quantitative label-free mass spectrometry (MS) rapidly develop, a consensus about the best practices is not apparent. In the work described here we compared popular statistical methods for detecting differential protein expression from quantitative MS data using both controlled experiments with known quantitative differences for specific proteins used as standards as well as "real" experiments where differences in protein abundance are not known a priori. Our results suggest that data-driven reproducibility-optimization can consistently produce reliable differential expression rankings for label-free proteome tools and are straightforward in their application.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Fragmentos de Péptidos
/
Programas Informáticos
/
Proteoma
/
Proteómica
/
Espectrometría de Masas en Tándem
Tipo de estudio:
Guideline
Límite:
Animals
/
Humans
/
Male
Idioma:
En
Revista:
J Proteome Res
Asunto de la revista:
BIOQUIMICA
Año:
2015
Tipo del documento:
Article
País de afiliación:
Finlandia