Your browser doesn't support javascript.
loading
The structure and timescales of heat perception in larval zebrafish.
Haesemeyer, Martin; Robson, Drew N; Li, Jennifer M; Schier, Alexander F; Engert, Florian.
Afiliación
  • Haesemeyer M; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
  • Robson DN; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA ; The Rowland Institute at Harvard, 100 Edwin H. Land Blvd., Cambridge, MA 02142, USA.
  • Li JM; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA ; The Rowland Institute at Harvard, 100 Edwin H. Land Blvd., Cambridge, MA 02142, USA.
  • Schier AF; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA ; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA ; Harvard Stem Cell Institute, Cambridge, MA 02138, USA ; FAS Center for
  • Engert F; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA ; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
Cell Syst ; 1(5): 338-348, 2015 Nov 25.
Article en En | MEDLINE | ID: mdl-26640823
ABSTRACT
Avoiding temperatures outside the physiological range is critical for animal survival, but how temperature dynamics are transformed into behavioral output is largely not understood. Here, we used an infrared laser to challenge freely swimming larval zebrafish with "white-noise" heat stimuli and built quantitative models relating external sensory information and internal state to behavioral output. These models revealed that larval zebrafish integrate temperature information over a time-window of 400 ms preceding a swimbout and that swimming is suppressed right after the end of a bout. Our results suggest that larval zebrafish compute both an integral and a derivative across heat in time to guide their next movement. Our models put important constraints on the type of computations that occur in the nervous system and reveal principles of how somatosensory temperature information is processed to guide behavioral decisions such as sensitivity to both absolute levels and changes in stimulation.

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Cell Syst Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Cell Syst Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos