Your browser doesn't support javascript.
loading
PTESFinder: a computational method to identify post-transcriptional exon shuffling (PTES) events.
Izuogu, Osagie G; Alhasan, Abd A; Alafghani, Hani M; Santibanez-Koref, Mauro; Elliott, David J; Elliot, David J; Jackson, Michael S.
Afiliación
  • Izuogu OG; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK. g.izuogu@ncl.ac.uk.
  • Alhasan AA; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK. abd.al-hasan@newcastle.ac.uk.
  • Alafghani HM; Security Forces Hostpital, P. O. Box 2748-24268-8541, Makkah, Kingdom of Saudi Arabia. hani940@hotmail.com.
  • Santibanez-Koref M; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK. mauro.santibanez-koref@ncl.ac.uk.
  • Elliot DJ; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK. david.elliot@ncl.ac.uk.
  • Jackson MS; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK. michael.jackson@ncl.ac.uk.
BMC Bioinformatics ; 17: 31, 2016 Jan 13.
Article en En | MEDLINE | ID: mdl-26758031
BACKGROUND: Transcripts, which have been subject to Post-transcriptional exon shuffling (PTES), have an exon order inconsistent with the underlying genomic sequence. These have been identified in a wide variety of tissues and cell types from many eukaryotes, and are now known to be mostly circular, cytoplasmic, and non-coding. Although there is no uniformly ascribed function, several have been shown to be involved in gene regulation. Accurate identification of these transcripts can, however, be difficult due to artefacts from a wide variety of sources. RESULTS: Here, we present a computational method, PTESFinder, to identify these transcripts from high throughput RNAseq data. Uniquely, it systematically excludes potential artefacts emanating from pseudogenes, segmental duplications, and template switching, and outputs both PTES and canonical exon junction counts to facilitate comparative analyses. In comparison with four existing methods, PTESFinder achieves highest specificity and comparable sensitivity at a variety of read depths. PTESFinder also identifies between 13 % and 41.6 % more structures, compared to publicly available methods recently used to identify human circular RNAs. CONCLUSIONS: With high sensitivity and specificity, user-adjustable filters that target known sources of false positives, and tailored output to facilitate comparison of transcript levels, PTESFinder will facilitate the discovery and analysis of these poorly understood transcripts.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: ARN / Regulación de la Expresión Génica / Empalme Alternativo / Biología Computacional / Genómica Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2016 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: ARN / Regulación de la Expresión Génica / Empalme Alternativo / Biología Computacional / Genómica Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2016 Tipo del documento: Article