Your browser doesn't support javascript.
loading
Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification.
Deans, Richard M; Morgens, David W; Ökesli, Ayse; Pillay, Sirika; Horlbeck, Max A; Kampmann, Martin; Gilbert, Luke A; Li, Amy; Mateo, Roberto; Smith, Mark; Glenn, Jeffrey S; Carette, Jan E; Khosla, Chaitan; Bassik, Michael C.
Afiliación
  • Deans RM; Department of Chemistry, Stanford University, Stanford, California, USA.
  • Morgens DW; Department of Genetics, Stanford University, Stanford, California, USA.
  • Ökesli A; Department of Genetics, Stanford University, Stanford, California, USA.
  • Pillay S; Department of Chemistry, Stanford University, Stanford, California, USA.
  • Horlbeck MA; Department of Microbiology and Immunology, Stanford University, Stanford, California, USA.
  • Kampmann M; Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA.
  • Gilbert LA; Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA.
  • Li A; Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA.
  • Mateo R; Department of Genetics, Stanford University, Stanford, California, USA.
  • Smith M; Department of Microbiology and Immunology, Stanford University, Stanford, California, USA.
  • Glenn JS; Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA.
  • Carette JE; Department of Microbiology and Immunology, Stanford University, Stanford, California, USA.
  • Khosla C; Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA.
  • Bassik MC; Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA.
Nat Chem Biol ; 12(5): 361-6, 2016 May.
Article en En | MEDLINE | ID: mdl-27018887
ABSTRACT
Broad-spectrum antiviral drugs targeting host processes could potentially treat a wide range of viruses while reducing the likelihood of emergent resistance. Despite great promise as therapeutics, such drugs remain largely elusive. Here we used parallel genome-wide high-coverage short hairpin RNA (shRNA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screens to identify the cellular target and mechanism of action of GSK983, a potent broad-spectrum antiviral with unexplained cytotoxicity. We found that GSK983 blocked cell proliferation and dengue virus replication by inhibiting the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH). Guided by mechanistic insights from both genomic screens, we found that exogenous deoxycytidine markedly reduced GSK983 cytotoxicity but not antiviral activity, providing an attractive new approach to improve the therapeutic window of DHODH inhibitors against RNA viruses. Our results highlight the distinct advantages and limitations of each screening method for identifying drug targets, and demonstrate the utility of parallel knockdown and knockout screens for comprehensive probing of drug activity.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Antivirales / Carbazoles / Lentivirus / ARN Interferente Pequeño / Sistemas CRISPR-Cas Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Antivirales / Carbazoles / Lentivirus / ARN Interferente Pequeño / Sistemas CRISPR-Cas Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos