Your browser doesn't support javascript.
loading
ProInflam: a webserver for the prediction of proinflammatory antigenicity of peptides and proteins.
Gupta, Sudheer; Madhu, Midhun K; Sharma, Ashok K; Sharma, Vineet K.
Afiliación
  • Gupta S; Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India.
  • Madhu MK; Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India.
  • Sharma AK; Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India.
  • Sharma VK; Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India. vineetks@iiserb.ac.in.
J Transl Med ; 14(1): 178, 2016 06 14.
Article en En | MEDLINE | ID: mdl-27301453
BACKGROUND: Proinflammatory immune response involves a complex series of molecular events leading to inflammatory reaction at a site, which enables host to combat plurality of infectious agents. It can be initiated by specific stimuli such as viral, bacterial, parasitic or allergenic antigens, or by non-specific stimuli such as LPS. On counter with such antigens, the complex interaction of antigen presenting cells, T cells and inflammatory mediators like IL1α, IL1ß, TNFα, IL12, IL18 and IL23 lead to proinflammatory immune response and further clearance of infection. In this study, we have tried to establish a relation between amino acid sequence of antigen and induction of proinflammatory response. RESULTS: A total of 729 experimentally-validated proinflammatory and 171 non-proinflammatory epitopes were obtained from IEDB database. The A, F, I, L and V amino acids and AF, FA, FF, PF, IV, IN dipeptides were observed as preferred residues in proinflammatory epitopes. Using the compositional and motif-based features of proinflammatory and non-proinflammatory epitopes, we have developed machine learning-based models for prediction of proinflammatory response of peptides. The hybrid of motifs and dipeptide-based features displayed best performance with MCC = 0.58 and an accuracy of 87.6 %. CONCLUSION: The amino acid sequence-based features of peptides were used to develop a machine learning-based prediction tool for the prediction of proinflammatory epitopes. This is a unique tool for the computational identification of proinflammatory peptide antigen/candidates and provides leads for experimental validations. The prediction model and tools for epitope mapping and similarity search are provided as a comprehensive web server which is freely available at http://metagenomics.iiserb.ac.in/proinflam/ and http://metabiosys.iiserb.ac.in/proinflam/ .
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Péptidos / Proteínas / Mediadores de Inflamación / Internet / Antígenos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Transl Med Año: 2016 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Péptidos / Proteínas / Mediadores de Inflamación / Internet / Antígenos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Transl Med Año: 2016 Tipo del documento: Article País de afiliación: India