Your browser doesn't support javascript.
loading
Computational design of a homotrimeric metalloprotein with a trisbipyridyl core.
Mills, Jeremy H; Sheffler, William; Ener, Maraia E; Almhjell, Patrick J; Oberdorfer, Gustav; Pereira, José Henrique; Parmeggiani, Fabio; Sankaran, Banumathi; Zwart, Peter H; Baker, David.
Afiliación
  • Mills JH; Department of Biochemistry and the Institute for Protein Design, University of Washington, Seattle, WA 98195.
  • Sheffler W; School of Molecular Sciences, Arizona State University, Tempe, AZ 85281.
  • Ener ME; The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85281.
  • Almhjell PJ; Department of Biochemistry and the Institute for Protein Design, University of Washington, Seattle, WA 98195.
  • Oberdorfer G; Department of Biochemistry and the Institute for Protein Design, University of Washington, Seattle, WA 98195.
  • Pereira JH; Department of Chemistry, University of Washington, Seattle, WA 98195.
  • Parmeggiani F; School of Molecular Sciences, Arizona State University, Tempe, AZ 85281.
  • Sankaran B; The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85281.
  • Zwart PH; Department of Biochemistry and the Institute for Protein Design, University of Washington, Seattle, WA 98195.
  • Baker D; Joint BioEnergy Institute, Emeryville, CA 94608.
Proc Natl Acad Sci U S A ; 113(52): 15012-15017, 2016 12 27.
Article en En | MEDLINE | ID: mdl-27940918
ABSTRACT
Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2'-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe(Bpy-ala)3]2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy The all-atom rmsd between the design model and crystal structure for the residues at the protein interface is ∼1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Piridinas / Ingeniería de Proteínas / Metaloproteínas Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Piridinas / Ingeniería de Proteínas / Metaloproteínas Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article