Your browser doesn't support javascript.
loading
Gene therapy targeting oligodendrocytes provides therapeutic benefit in a leukodystrophy model.
Georgiou, Elena; Sidiropoulou, Kyriaki; Richter, Jan; Papaneophytou, Christos; Sargiannidou, Irene; Kagiava, Alexia; von Jonquieres, Georg; Christodoulou, Christina; Klugmann, Matthias; Kleopa, Kleopas A.
Afiliación
  • Georgiou E; Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
  • Sidiropoulou K; Department of Zoology, University of Crete, Heraklion, Greece.
  • Richter J; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
  • Papaneophytou C; Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
  • Sargiannidou I; Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
  • Kagiava A; Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
  • von Jonquieres G; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia.
  • Christodoulou C; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
  • Klugmann M; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia.
  • Kleopa KA; Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
Brain ; 140(3): 599-616, 2017 03 01.
Article en En | MEDLINE | ID: mdl-28100454
ABSTRACT
Pelizaeus-Merzbacher-like disease or hypomyelinating leukodystrophy-2 is an autosomal recessively inherited leukodystrophy with childhood onset resulting from mutations in the gene encoding the gap junction protein connexin 47 (Cx47, encoded by GJC2). Cx47 is expressed specifically in oligodendrocytes and is crucial for gap junctional communication throughout the central nervous system. Previous studies confirmed that a cell autonomous loss-of-function mechanism underlies hypomyelinating leukodystrophy-2 and that transgenic oligodendrocyte-specific expression of another connexin, Cx32 (GJB1), can restore gap junctions in oligodendrocytes to achieve correction of the pathology in a disease model. To develop an oligodendrocyte-targeted gene therapy, we cloned the GJC2/Cx47 gene under the myelin basic protein promoter and used an adeno-associated viral vector (AAV.MBP.Cx47myc) to deliver the gene to postnatal Day 10 mice via a single intracerebral injection in the internal capsule area. Lasting Cx47 expression specifically in oligodendrocytes was detected in Cx47 single knockout and Cx32/Cx47 double knockout mice up to 12 weeks post-injection, including the corpus callosum and the internal capsule but also in more distant areas of the cerebrum and in the spinal cord. Application of this oligodendrocyte-targeted somatic gene therapy at postnatal Day 10 in groups of double knockout mice, a well characterized model of hypomyelinating leukodystrophy-2, resulted in significant improvement in motor performance and coordination at 1 month of age in treated compared to mock-treated mice, as well as prolonged survival. Furthermore, immunofluorescence and morphological analysis revealed improvement in demyelination, oligodendrocyte apoptosis, inflammation, and astrogliosis, all typical features of this leukodystrophy model in both brain and spinal cord. Functional dye transfer analysis confirmed the re-establishment of oligodendrocyte gap junctional connectivity in treated as opposed to untreated mice. These results provide a significant advance in the development of oligodendrocyte-cell specific gene therapy. Adeno-associated viral vectors can be used to target therapeutic expression of a myelin gene to oligodendrocytes. We show evidence for the first somatic gene therapy approach to treat hypomyelinating leukodystrophy-2 preclinically, providing a potential treatment for this and similar forms of leukodystrophies.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Terapia Genética / Oligodendroglía / Regulación de la Expresión Génica / Modelos Animales de Enfermedad / Leucoencefalopatías Tipo de estudio: Etiology_studies Límite: Animals / Humans Idioma: En Revista: Brain Año: 2017 Tipo del documento: Article País de afiliación: Chipre

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Terapia Genética / Oligodendroglía / Regulación de la Expresión Génica / Modelos Animales de Enfermedad / Leucoencefalopatías Tipo de estudio: Etiology_studies Límite: Animals / Humans Idioma: En Revista: Brain Año: 2017 Tipo del documento: Article País de afiliación: Chipre