Your browser doesn't support javascript.
loading
Taming hyperactive hDNase I: Stable inducible expression of a hyperactive salt- and actin-resistant variant of human deoxyribonuclease I in CHO cells.
Lam, Cynthia; Santell, Lydia; Wilson, Blair; Yim, Mandy; Louie, Salina; Tang, Danming; Shaw, David; Chan, Pamela; Lazarus, Robert A; Snedecor, Brad; Misaghi, Shahram.
Afiliación
  • Lam C; Early Stage Cell Culture, Genentech, Inc, South San Francisco, CA, 94080.
  • Santell L; Early Discovery Biochemistry, Genentech, Inc, South San Francisco, CA, 94080.
  • Wilson B; Biochemical and Cellular Pharmacology Dept., Genentech, Inc, South San Francisco, CA, 94080.
  • Yim M; Early Stage Cell Culture, Genentech, Inc, South San Francisco, CA, 94080.
  • Louie S; Early Stage Cell Culture, Genentech, Inc, South San Francisco, CA, 94080.
  • Tang D; Early Stage Cell Culture, Genentech, Inc, South San Francisco, CA, 94080.
  • Shaw D; Early Stage Cell Culture, Genentech, Inc, South San Francisco, CA, 94080.
  • Chan P; Biochemical and Cellular Pharmacology Dept., Genentech, Inc, South San Francisco, CA, 94080.
  • Lazarus RA; Early Discovery Biochemistry, Genentech, Inc, South San Francisco, CA, 94080.
  • Snedecor B; Early Stage Cell Culture, Genentech, Inc, South San Francisco, CA, 94080.
  • Misaghi S; Early Stage Cell Culture, Genentech, Inc, South San Francisco, CA, 94080.
Biotechnol Prog ; 33(2): 523-533, 2017 03.
Article en En | MEDLINE | ID: mdl-28127892
ABSTRACT
While the most common causes of clonal instability are DNA copy number loss and silencing, toxicity of the expressed protein(s) may also induce clonal instability. Human DNase I (hDNase I) is used therapeutically for the treatment of cystic fibrosis (CF) and may have potential benefit for use in systemic lupus erythematosus (SLE). hDNase I is an endonuclease that catalyzes degradation of extracellular DNA and is inhibited by both salt and G-actin. Engineered versions of hDNase I, bearing multiple point mutations, which renders them Hyperactive, Salt- and Actin-Resistant (HSAR-hDNase I) have been developed previously. However, constitutive expression of HSAR-hDNase I enzymes has been very challenging and, despite considerable efforts and screening thousands of clones, no stable clone capable of constitutive expression had been obtained. Here, we developed a regulated expression system for stable expression of an HSAR-hDNase I in Chinese Hamster Ovary (CHO) cells. The HSAR-hDNase I clones were stable and, upon induction, expressed enzymatically functional protein. Our findings suggest that degradation of host's DNA mediated by HSAR-hDNase I during cell division is the likely cause of clonal instability observed in cells constitutively expressing this protein. Purified HSAR-hDNase I was both hyperactive and resistant to inhibition by salt and G-actin, resulting in an enzyme having ca. 10-fold greater specific activity and the potential to be a superior therapeutic agent to wild type (WT) hDNase I. Furthermore, the ability to regulate hDNase I expression has enabled process development improvements that achieve higher cell growth and product titers while maintaining product quality. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 32523-533, 2017.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Sales (Química) / Ingeniería de Proteínas / Actinas / Clonación Molecular / Desoxirribonucleasa I Límite: Animals / Humans Idioma: En Revista: Biotechnol Prog Asunto de la revista: BIOTECNOLOGIA Año: 2017 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Sales (Química) / Ingeniería de Proteínas / Actinas / Clonación Molecular / Desoxirribonucleasa I Límite: Animals / Humans Idioma: En Revista: Biotechnol Prog Asunto de la revista: BIOTECNOLOGIA Año: 2017 Tipo del documento: Article