Your browser doesn't support javascript.
loading
Highly Oxygenated Multifunctional Compounds in α-Pinene Secondary Organic Aerosol.
Zhang, Xuan; Lambe, Andrew T; Upshur, Mary Alice; Brooks, William A; Gray Bé, Ariana; Thomson, Regan J; Geiger, Franz M; Surratt, Jason D; Zhang, Zhenfa; Gold, Avram; Graf, Stephan; Cubison, Michael J; Groessl, Michael; Jayne, John T; Worsnop, Douglas R; Canagaratna, Manjula R.
Afiliación
  • Zhang X; Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc. , Billerica, Massachusetts 01821, United States.
  • Lambe AT; Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc. , Billerica, Massachusetts 01821, United States.
  • Upshur MA; Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.
  • Brooks WA; Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc. , Billerica, Massachusetts 01821, United States.
  • Gray Bé A; Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.
  • Thomson RJ; Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.
  • Geiger FM; Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.
  • Surratt JD; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina , Chapel Hill, North Carolina 27599, United States.
  • Zhang Z; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina , Chapel Hill, North Carolina 27599, United States.
  • Gold A; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina , Chapel Hill, North Carolina 27599, United States.
  • Graf S; TOFWERK , CH-3600 Thun, Switzerland.
  • Cubison MJ; TOFWERK , CH-3600 Thun, Switzerland.
  • Groessl M; TOFWERK , CH-3600 Thun, Switzerland.
  • Jayne JT; Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc. , Billerica, Massachusetts 01821, United States.
  • Worsnop DR; Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc. , Billerica, Massachusetts 01821, United States.
  • Canagaratna MR; Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc. , Billerica, Massachusetts 01821, United States.
Environ Sci Technol ; 51(11): 5932-5940, 2017 Jun 06.
Article en En | MEDLINE | ID: mdl-28445044
ABSTRACT
Highly oxygenated multifunctional organic compounds (HOMs) originating from biogenic emissions constitute a widespread source of organic aerosols in the pristine atmosphere. However, the molecular forms in which HOMs are present in the condensed phase upon gas-particle partitioning remain unclear. In this study, we show that highly oxygenated molecules that contain multiple peroxide functionalities are readily cationized by the attachment of Na+ during electrospray ionization operated in the positive ion mode. With this method, we present the first identification of HOMs characterized as C8-10H12-18O4-9 monomers and C16-20H24-36O8-14 dimers in α-pinene derived secondary organic aerosol (SOA). Simultaneous detection of these molecules in the gas phase provides direct evidence for their gas-to-particle conversion. Molecular properties of particulate HOMs generated from ozonolysis and OH oxidation of unsubstituted (C10H16) and deuterated (C10H13D3) α-pinene are investigated using coupled ion mobility spectrometry with mass spectrometry. The systematic shift in the mass of monomers in the deuterated system is consistent with the decomposition of isomeric vinylhydroperoxides to release vinoxy radical isotopologues, the precursors to a sequence of autoxidation reactions that ultimately yield HOMs in the gas phase. The remarkable difference observed in the dimer abundance under O3- versus OH-dominant environments underlines the competition between intramolecular hydrogen migration of peroxy radicals and their bimolecular termination reactions. Our results provide new and direct molecular-level information for a key component needed for achieving carbon mass closure of α-pinene SOA.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Aerosoles / Monoterpenos / Contaminantes Atmosféricos Idioma: En Revista: Environ Sci Technol Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Aerosoles / Monoterpenos / Contaminantes Atmosféricos Idioma: En Revista: Environ Sci Technol Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos