Your browser doesn't support javascript.
loading
Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P.
Afiliación
  • Yang K; IBM Almaden Research Center, San Jose, California 95120, USA.
  • Bae Y; IBM Almaden Research Center, San Jose, California 95120, USA.
  • Paul W; Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea.
  • Natterer FD; Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea.
  • Willke P; IBM Almaden Research Center, San Jose, California 95120, USA.
  • Lado JL; IBM Almaden Research Center, San Jose, California 95120, USA.
  • Ferrón A; Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Choi T; IBM Almaden Research Center, San Jose, California 95120, USA.
  • Fernández-Rossier J; Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea.
  • Heinrich AJ; Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea.
  • Lutz CP; QuantaLab, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-310 Braga, Portugal.
Phys Rev Lett ; 119(22): 227206, 2017 Dec 01.
Article en En | MEDLINE | ID: mdl-29286811
ABSTRACT
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos