Your browser doesn't support javascript.
loading
Adaptive Designs for Non-inferiority Trials with Multiple Experimental Treatments.
Xu, Wenfu; Hu, Feifang; Cheung, Siu Hung.
Afiliación
  • Xu W; 1 School of Statistics, Renmin University of China, Beijing, China.
  • Hu F; 2 Department of Statistics, George Washington University, Washington, DC, USA.
  • Cheung SH; 3 Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
Stat Methods Med Res ; 27(11): 3255-3270, 2018 11.
Article en En | MEDLINE | ID: mdl-29298617
The increase in the popularity of non-inferiority clinical trials represents the increasing need to search for substitutes for some reference (standard) treatments. A new treatment would be preferred to the standard treatment if the benefits of adopting it outweigh a possible clinically insignificant reduction in treatment efficacy (non-inferiority margin). Statistical procedures have recently been developed for treatment comparisons in non-inferiority clinical trials that have multiple experimental (new) treatments. An ethical concern for non-inferiority trials is that some patients undergo the less effective treatments; this problem is more serious when multiple experimental treatments are included in a balanced trial in which the sample sizes are the same for all experimental treatments. With the aim of giving fewer patients the inferior treatments, we propose a response-adaptive treatment allocation scheme that is based on the doubly adaptive biased coin design. The proposed adaptive design is also shown to be superior to the balanced design in terms of testing power.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proyectos de Investigación / Ensayos Clínicos como Asunto / Terapias en Investigación Idioma: En Revista: Stat Methods Med Res Año: 2018 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proyectos de Investigación / Ensayos Clínicos como Asunto / Terapias en Investigación Idioma: En Revista: Stat Methods Med Res Año: 2018 Tipo del documento: Article País de afiliación: China