Your browser doesn't support javascript.
loading
Environment-Modulated Crystallization of Cu2O and CuO Nanowires by Electrospinning and Their Charge Storage Properties.
Harilal, Midhun; G Krishnan, Syam; Pal, Bhupender; Reddy, M Venkatashamy; Ab Rahim, Mohd Hasbi; Yusoff, Mashitah Mohd; Jose, Rajan.
Afiliación
  • Harilal M; Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Science & Technology, Universiti Malaysia Pahang , Kuantan 26300, Pahang, Malaysia.
  • G Krishnan S; Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Science & Technology, Universiti Malaysia Pahang , Kuantan 26300, Pahang, Malaysia.
  • Pal B; Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Science & Technology, Universiti Malaysia Pahang , Kuantan 26300, Pahang, Malaysia.
  • Reddy MV; Department of Materials Science and Engineering, National University of Singapore , Singapore 117575, Singapore.
  • Ab Rahim MH; Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Science & Technology, Universiti Malaysia Pahang , Kuantan 26300, Pahang, Malaysia.
  • Yusoff MM; Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Science & Technology, Universiti Malaysia Pahang , Kuantan 26300, Pahang, Malaysia.
  • Jose R; Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Science & Technology, Universiti Malaysia Pahang , Kuantan 26300, Pahang, Malaysia.
Langmuir ; 34(5): 1873-1882, 2018 02 06.
Article en En | MEDLINE | ID: mdl-29345940
ABSTRACT
This article reports the synthesis of cuprous oxide (Cu2O) and cupric oxide (CuO) nanowires by controlling the calcination environment of electrospun polymeric nanowires and their charge storage properties. The Cu2O nanowires showed higher surface area (86 m2 g-1) and pore size than the CuO nanowires (36 m2 g-1). Electrochemical analysis was carried out in 6 M KOH, and both the electrodes showed battery-type charge storage mechanism. The electrospun Cu2O electrodes delivered high discharge capacity (126 mA h g-1) than CuO (72 mA h g-1) at a current density of 2.4 mA cm-2. Electrochemical impedance spectroscopy measurements show almost similar charge-transfer resistance in Cu2O (1.2 Ω) and CuO (1.6 Ω); however, Cu2O showed an order of magnitude higher ion diffusion. The difference in charge storage between these electrodes is attributed to the difference in surface properties and charge kinetics at the electrode. The electrode also shows superior cyclic stability (98%) and Coulombic efficiency (98%) after 5000 cycles. Therefore, these materials could be acceptable choices as a battery-type or pseudocapacitive electrode in asymmetric supercapacitors.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Malasia

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Malasia