Your browser doesn't support javascript.
loading
Family with sequence similarity 13, member A modulates adipocyte insulin signaling and preserves systemic metabolic homeostasis.
Wardhana, Donytra Arby; Ikeda, Koji; Barinda, Agian Jeffilano; Nugroho, Dhite Bayu; Qurania, Kikid Rucira; Yagi, Keiko; Miyata, Keishi; Oike, Yuichi; Hirata, Ken-Ichi; Emoto, Noriaki.
Afiliación
  • Wardhana DA; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan.
  • Ikeda K; Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan.
  • Barinda AJ; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan; ikedak-circ@umin.ac.jp.
  • Nugroho DB; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan.
  • Qurania KR; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan.
  • Yagi K; Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan.
  • Miyata K; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan.
  • Oike Y; Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan.
  • Hirata KI; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan.
  • Emoto N; Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, 860-8556 Kumamoto, Japan.
Proc Natl Acad Sci U S A ; 115(7): 1529-1534, 2018 02 13.
Article en En | MEDLINE | ID: mdl-29386390
ABSTRACT
Adipose tissue dysfunction is causally implicated in the impaired metabolic homeostasis associated with obesity; however, detailed mechanisms underlying dysregulated adipocyte functions in obesity remain to be elucidated. Here we searched for genes that provide a previously unknown mechanism in adipocyte metabolic functions and identified family with sequence similarity 13, member A (Fam13a) as a factor that modifies insulin signal cascade in adipocytes. Fam13a was highly expressed in adipose tissue, predominantly in mature adipocytes, and its expression was substantially reduced in adipose tissues of obese compared with lean mice. We revealed that Fam13a accentuated insulin signaling by recruiting protein phosphatase 2A with insulin receptor substrate 1 (IRS1), leading to protection of IRS1 from proteasomal degradation. We further demonstrated that genetic loss of Fam13a exacerbated obesity-related metabolic disorders, while targeted activation of Fam13a in adipocytes ameliorated it in association with altered adipose tissue insulin sensitivity in mice. Our data unveiled a previously unknown mechanism in the regulation of adipocyte insulin signaling by Fam13a and identified its significant role in systemic metabolic homeostasis, shedding light on Fam13a as a pharmacotherapeutic target to treat obesity-related metabolic disorders.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Resistencia a la Insulina / Adipocitos / Proteínas Activadoras de GTPasa / Insulina / Enfermedades Metabólicas / Obesidad Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Resistencia a la Insulina / Adipocitos / Proteínas Activadoras de GTPasa / Insulina / Enfermedades Metabólicas / Obesidad Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article País de afiliación: Japón