Your browser doesn't support javascript.
loading
Morphology-Mediated Photoresponsive and Fluorescence Behaviors of Azobenzene-Containing Block Copolymers.
Huang, Pin-Chi; Mata, Jitendra P; Wu, Chun-Ming; Lo, Chieh-Tsung.
Afiliación
  • Huang PC; Department of Chemical Engineering , National Cheng Kung University , Tainan City 701 , Taiwan.
  • Mata JP; Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organization , Lucas Heights , New South Wales 2234 , Australia.
  • Wu CM; National Synchrotron Radiation Research Center , 101 Hsin-Ann Road, Hsinchu Science Park , Hsinchu 30076 , Taiwan.
  • Lo CT; Department of Chemical Engineering , National Cheng Kung University , Tainan City 701 , Taiwan.
Langmuir ; 34(25): 7416-7427, 2018 06 26.
Article en En | MEDLINE | ID: mdl-29863876
We investigated the relationship between the self-assembled morphology of poly( tert-butyl acrylate)- block-poly(6-[4-(4'-methoxyphenylazo)phenoxy]hexyl methacrylate) (P tBA- b-PAzoMA) block copolymers and their photoresponsive and fluorescence behaviors. The morphology of P tBA- b-PAzoMA copolymers was manipulated by dissolving them in mixed dimethylformamide (DMF)/hexanol solvents. When P tBA- b-PAzoMA was dissolved in DMF-rich (neutral) solvents, a favorable interaction between the DMF molecules and both blocks resulted in a random-coiled conformation. The unconfined morphology facilitated the formation of both nonassociated and head-to-head organized azobenzene mesogens, which promoted fluorescence emission. When hexanol, a P tBA-selective solvent, was added to DMF, the solvency of P tBA- b-PAzoMA worsened, leading to its assembly into micelles, with PAzoMA in the micelle core. The confinement of azobenzene moieties in the micelle core hindered their trans-to- cis photoisomerization, thereby considerably decreasing the kinetics of photoisomerization and the population of cis isomers. Additionally, a nanoconfined geometry resulted in compactly packed chromophores, causing fluorescence loss. When P tBA- b-PAzoMA was exposed to UV light, the increased number of cis isomers hampered the closely packed mesogens, resulting in a substantial enhancement of fluorescence emission. When the mole fraction of the PAzoMA block was increased, P tBA- b-PAzoMA formed clusters, causing the slow kinetics of photoisomerization and fluorescence quenching.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Taiwán