Your browser doesn't support javascript.
loading
Non-Newtonian Polymer-Nanoparticle Hydrogels Enhance Cell Viability during Injection.
Lopez Hernandez, Hector; Grosskopf, Abigail K; Stapleton, Lyndsay M; Agmon, Gillie; Appel, Eric A.
Afiliación
  • Lopez Hernandez H; Department of Materials Science & Engineering, Stanford University, Stanford, 94305, CA, United States.
  • Grosskopf AK; Department of Chemical Engineering, Stanford University, Stanford, 94305, CA, United States.
  • Stapleton LM; Department of Bioengineering, Stanford University, Stanford, 94305, CA, United States.
  • Agmon G; Department of Bioengineering, Stanford University, Stanford, 94305, CA, United States.
  • Appel EA; Department of Materials Science & Engineering, Department of Bioengineering, Stanford University, Stanford, 94305, CA, United States.
Macromol Biosci ; 19(1): e1800275, 2019 01.
Article en En | MEDLINE | ID: mdl-30369048
ABSTRACT
Drug delivery and cell transplantation require minimally invasive deployment strategies such as injection through clinically relevant high-gauge needles. Supramolecular hydrogels comprising dodecyl-modified hydroxypropylmethylcellulose and poly(ethylene glycol)-block-poly(lactic acid) have been previously demonstrated for the delivery of drugs and proteins. Here, it is demonstrated that the rheological properties of these hydrogels allow for facile injectability, an increase of cell viability after injection when compared to cell viabilities of cells injected in phosphate-buffered saline, and homogeneous cell suspensions that do not settle. These hydrogels are injected at 1 mL min-1 with pressures less than 400 kPa, despite the solid-like properties of the gel when at rest. The cell viabilities immediately after injection are greater than 86% for adult human dermal fibroblasts, human umbilical vein cells, smooth muscle cells, and human mesenchymal stem cells. Cells are shown to remain suspended and proliferate in the hydrogel at the same rate as observed in cell media. The work expands on the versatility of these hydrogels and lays a foundation for the codelivery of drugs, proteins, and cells.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ensayo de Materiales / Sistemas de Liberación de Medicamentos / Hidrogeles / Nanopartículas / Células Madre Mesenquimatosas Límite: Humans Idioma: En Revista: Macromol Biosci Asunto de la revista: BIOQUIMICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ensayo de Materiales / Sistemas de Liberación de Medicamentos / Hidrogeles / Nanopartículas / Células Madre Mesenquimatosas Límite: Humans Idioma: En Revista: Macromol Biosci Asunto de la revista: BIOQUIMICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos