Your browser doesn't support javascript.
loading
Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae.
Wehrs, Maren; Prahl, Jan-Philip; Moon, Jadie; Li, Yuchen; Tanjore, Deepti; Keasling, Jay D; Pray, Todd; Mukhopadhyay, Aindrila.
Afiliación
  • Wehrs M; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Prahl JP; Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany.
  • Moon J; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
  • Li Y; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Tanjore D; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
  • Keasling JD; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Pray T; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
  • Mukhopadhyay A; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Microb Cell Fact ; 17(1): 193, 2018 Dec 13.
Article en En | MEDLINE | ID: mdl-30545355
ABSTRACT

BACKGROUND:

Beyond pathway engineering, the metabolic state of the production host is critical in maintaining the efficiency of cellular production. The biotechnologically important yeast Saccharomyces cerevisiae adjusts its energy metabolism based on the availability of oxygen and carbon sources. This transition between respiratory and non-respiratory metabolic state is accompanied by substantial modifications of central carbon metabolism, which impact the efficiency of metabolic pathways and the corresponding final product titers. Non-ribosomal peptide synthetases (NRPS) are an important class of biocatalysts that provide access to a wide array of secondary metabolites. Indigoidine, a blue pigment, is a representative NRP that is valuable by itself as a renewably produced pigment.

RESULTS:

Saccharomyces cerevisiae was engineered to express a bacterial NRPS that converts glutamine to indigoidine. We characterize carbon source use and production dynamics, and demonstrate that indigoidine is solely produced during respiratory cell growth. Production of indigoidine is abolished during non-respiratory growth even under aerobic conditions. By promoting respiratory conditions via controlled feeding, we scaled the production to a 2 L bioreactor scale, reaching a maximum titer of 980 mg/L.

CONCLUSIONS:

This study represents the first use of the Streptomyces lavendulae NRPS (BpsA) in a fungal host and its scale-up. The final product indigoidine is linked to the activity of the TCA cycle and serves as a reporter for the respiratory state of S. cerevisiae. Our approach can be broadly applied to investigate diversion of flux from central carbon metabolism for NRPS and other heterologous pathway engineering, or to follow a population switch between respiratory and non-respiratory modes.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Péptido Sintasas / Piperidonas / Saccharomyces cerevisiae / Ingeniería Metabólica Idioma: En Revista: Microb Cell Fact Asunto de la revista: BIOTECNOLOGIA / MICROBIOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Péptido Sintasas / Piperidonas / Saccharomyces cerevisiae / Ingeniería Metabólica Idioma: En Revista: Microb Cell Fact Asunto de la revista: BIOTECNOLOGIA / MICROBIOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos