Your browser doesn't support javascript.
loading
Signatures of a jet cocoon in early spectra of a supernova associated with a γ-ray burst.
Izzo, L; de Ugarte Postigo, A; Maeda, K; Thöne, C C; Kann, D A; Della Valle, M; Sagues Carracedo, A; Michalowski, M J; Schady, P; Schmidl, S; Selsing, J; Starling, R L C; Suzuki, A; Bensch, K; Bolmer, J; Campana, S; Cano, Z; Covino, S; Fynbo, J P U; Hartmann, D H; Heintz, K E; Hjorth, J; Japelj, J; Kaminski, K; Kaper, L; Kouveliotou, C; Kruzynski, M; Kwiatkowski, T; Leloudas, G; Levan, A J; Malesani, D B; Michalowski, T; Piranomonte, S; Pugliese, G; Rossi, A; Sánchez-Ramírez, R; Schulze, S; Steeghs, D; Tanvir, N R; Ulaczyk, K; Vergani, S D; Wiersema, K.
Afiliación
  • Izzo L; Instituto de Astrofísica de Andalucía (IAA-CSIC), Granada, Spain. izzo@iaa.es.
  • de Ugarte Postigo A; Instituto de Astrofísica de Andalucía (IAA-CSIC), Granada, Spain.
  • Maeda K; DARK, Niels Bohr Institute, University of Copenaghen, Copenhagen, Denmark.
  • Thöne CC; Department of Astronomy, Kyoto University, Kyoto, Japan.
  • Kann DA; Instituto de Astrofísica de Andalucía (IAA-CSIC), Granada, Spain.
  • Della Valle M; Instituto de Astrofísica de Andalucía (IAA-CSIC), Granada, Spain.
  • Sagues Carracedo A; Instituto de Astrofísica de Andalucía (IAA-CSIC), Granada, Spain.
  • Michalowski MJ; INAF-Osservatorio Astronomico di Capodimonte, Napoli, Italy.
  • Schady P; International Center for Relativistic Astrophysics Network, Pescara, Italy.
  • Schmidl S; LAPTh, Université de Savoie, CNRS, Annecy-le-Vieux, France.
  • Selsing J; The Oskar Klein Centre, Physics Department, Stockholm University, Stockholm, Sweden.
  • Starling RLC; Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland.
  • Suzuki A; Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany.
  • Bensch K; Department of Physics, University of Bath, Bath, UK.
  • Bolmer J; Thüringer Landessternwarte Tautenburg, Tautenburg, Germany.
  • Campana S; DARK, Niels Bohr Institute, University of Copenaghen, Copenhagen, Denmark.
  • Cano Z; The Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen, Copenhagen Ø, Denmark.
  • Covino S; The Cosmic Dawn Center (DAWN), DTU-Space, Technical University of Denmark, Kongens Lyngby, Denmark.
  • Fynbo JPU; Department of Physics and Astronomy, University of Leicester, Leicester, UK.
  • Hartmann DH; Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Tokyo, Japan.
  • Heintz KE; Instituto de Astrofísica de Andalucía (IAA-CSIC), Granada, Spain.
  • Hjorth J; Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany.
  • Japelj J; European Southern Observatory, Vitacura, Chile.
  • Kaminski K; INAF-Osservatorio Astronomico di Brera, Merate, Italy.
  • Kaper L; Instituto de Astrofísica de Andalucía (IAA-CSIC), Granada, Spain.
  • Kouveliotou C; INAF-Osservatorio Astronomico di Brera, Merate, Italy.
  • Kruzynski M; The Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen, Copenhagen Ø, Denmark.
  • Kwiatkowski T; The Cosmic Dawn Center (DAWN), DTU-Space, Technical University of Denmark, Kongens Lyngby, Denmark.
  • Leloudas G; Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.
  • Levan AJ; The Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen, Copenhagen Ø, Denmark.
  • Malesani DB; The Cosmic Dawn Center (DAWN), DTU-Space, Technical University of Denmark, Kongens Lyngby, Denmark.
  • Michalowski T; Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Reykjavik, Iceland.
  • Piranomonte S; DARK, Niels Bohr Institute, University of Copenaghen, Copenhagen, Denmark.
  • Pugliese G; Astronomical Institute Anton Pannekoek, University of Amsterdam, Amsterdam, The Netherlands.
  • Rossi A; Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland.
  • Sánchez-Ramírez R; Astronomical Institute Anton Pannekoek, University of Amsterdam, Amsterdam, The Netherlands.
  • Schulze S; Department of Physics, The George Washington University, Washington, DC, USA.
  • Steeghs D; Astronomy, Physics and Statistics Institute of Sciences (APSIS), The George Washington University, Washington, DC, USA.
  • Tanvir NR; Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland.
  • Ulaczyk K; Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland.
  • Vergani SD; DARK, Niels Bohr Institute, University of Copenaghen, Copenhagen, Denmark.
  • Wiersema K; DTU Space, National Space Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
Nature ; 565(7739): 324-327, 2019 01.
Article en En | MEDLINE | ID: mdl-30651614
ABSTRACT
Long γ-ray bursts are associated with energetic, broad-lined, stripped-envelope supernovae1,2 and as such mark the death of massive stars. The scarcity of such events nearby and the brightness of the γ-ray burst afterglow, which dominates the emission in the first few days after the burst, have so far prevented the study of the very early evolution of supernovae associated with γ-ray bursts3. In hydrogen-stripped supernovae that are not associated with γ-ray bursts, an excess of high-velocity (roughly 30,000 kilometres per second) material has been interpreted as a signature of a choked jet, which did not emerge from the progenitor star and instead deposited all of its energy in a thermal cocoon4. Here we report multi-epoch spectroscopic observations of the supernova SN 2017iuk, which is associated with the γ-ray burst GRB 171205A. Our spectra display features at extremely high expansion velocities (around 115,000 kilometres per second) within the first day after the burst5,6. Using spectral synthesis models developed for SN 2017iuk, we show that these features are characterized by chemical abundances that differ from those observed in the ejecta of SN 2017iuk at later times. We further show that the high-velocity features originate from the mildly relativistic hot cocoon that is generated by an ultra-relativistic jet within the γ-ray burst expanding and decelerating into the medium that surrounds the progenitor star7,8. This cocoon rapidly becomes transparent9 and is outshone by the supernova emission, which starts to dominate the emission three days after the burst.

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Nature Año: 2019 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Nature Año: 2019 Tipo del documento: Article País de afiliación: España