Your browser doesn't support javascript.
loading
DamC reveals principles of chromatin folding in vivo without crosslinking and ligation.
Redolfi, Josef; Zhan, Yinxiu; Valdes-Quezada, Christian; Kryzhanovska, Mariya; Guerreiro, Isabel; Iesmantavicius, Vytautas; Pollex, Tim; Grand, Ralph S; Mulugeta, Eskeatnaf; Kind, Jop; Tiana, Guido; Smallwood, Sebastien A; de Laat, Wouter; Giorgetti, Luca.
Afiliación
  • Redolfi J; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
  • Zhan Y; University of Basel, Basel, Switzerland.
  • Valdes-Quezada C; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
  • Kryzhanovska M; University of Basel, Basel, Switzerland.
  • Guerreiro I; Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands.
  • Iesmantavicius V; University Medical Center Utrecht, Utrecht, the Netherlands.
  • Pollex T; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
  • Grand RS; Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands.
  • Mulugeta E; University Medical Center Utrecht, Utrecht, the Netherlands.
  • Kind J; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
  • Tiana G; EMBL, Heidelberg, Germany.
  • Smallwood SA; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
  • de Laat W; Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands.
  • Giorgetti L; Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands.
Nat Struct Mol Biol ; 26(6): 471-480, 2019 06.
Article en En | MEDLINE | ID: mdl-31133702
ABSTRACT
Current understanding of chromosome folding is largely reliant on chromosome conformation capture (3C)-based experiments, where chromosomal interactions are detected as ligation products after chromatin crosslinking. To measure chromosome structure in vivo, quantitatively and without crosslinking and ligation, we implemented a modified version of DNA adenine methyltransferase identification (DamID) named DamC, which combines DNA methylation-based detection of chromosomal interactions with next-generation sequencing and biophysical modeling of methylation kinetics. DamC performed in mouse embryonic stem cells provides the first in vivo validation of the existence of topologically associating domains (TADs), CTCF loops and confirms 3C-based measurements of the scaling of contact probabilities. Combining DamC with transposon-mediated genomic engineering shows that new loops can be formed between ectopic and endogenous CTCF sites, which redistributes physical interactions within TADs. DamC provides the first crosslinking- and ligation-free demonstration of the existence of key structural features of chromosomes and provides novel insights into how chromosome structure within TADs can be manipulated.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Cromatina / Metiltransferasa de ADN de Sitio Específico (Adenina Especifica) / Metilación de ADN / Factor de Unión a CCCTC Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Struct Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Cromatina / Metiltransferasa de ADN de Sitio Específico (Adenina Especifica) / Metilación de ADN / Factor de Unión a CCCTC Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Struct Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: Suiza